

www.GetPedia.com

*More than 150,000 articles in the
search database

*Learn how almost everything
works

http://www.getpedia.com/
http://www.getpedia.com

SIP DEMYSTIFIED

SIP
Demystified

Gonzalo Camarillo

McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan Seoul

Singapore Sydney Toronto

Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

The material in this eBook also appears in the print version of this title: 0-07-137340-3.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-
marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringe-
ment of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com or (212)
904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the
work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works
based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior con-
sent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right
to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES
AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE
WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR
OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will
be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error
or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the con-
tent of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any
indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even
if any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause what-
soever whether such claim or cause arises in contract, tort or otherwise.

 abc
McGraw-Hill

0-07-141462-2

DOI: 10.1036/0071414622

To my family, for their continuous support and
encouragement. The education they have given
me is the best heritage one could ever get.

ACKNOWLEDGMENTS

This book was possible thanks to my management in Ericsson Finland,
namely Christian Engblom, Jussi Haapakangas, Rolf Svanbäck, Roger
Förström, and Stefan Von Schantz. Their encouragement was essential in
the first stages of the book. They together with Carl Gunnar Perntz and
Olle Viktorsson, from Ericsson Sweden, let me go to Columbia University
in New York to work together with Professor Schulzrinne when I was fin-
ishing writing SIP Demystified.

Professor Schulzrinne's advice and guidance has been very important
to me since I began working on SIP-related issues, when SIP was still a
brief Internet draft within the MMUSIC working group.

Miguel Angel García and Jonathan Rosenberg provided guidance and
detailed comments. Their reviews of the manuscript contributed to
improve the final product.

Last but not least, Marjorie Spencer, my editor at McGraw-Hill, did a
terrific work on the manuscript. She deserves recognition for her impact
on the final manuscript. She provided new ideas and different points of
view that helped make the technical explanations contained in this book
clearer to readers with all types of backgrounds.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

CONTENTS

Preface xiii

Foreword xvii

Chapter 1 Signalling in the Circuit-Switched Network 1

The Origins of Circuit-Switching 3
Characteristics of Circuit-Switching 6

Strengths of Circuit-Switching 6
Weaknesses of Circuit-Switching 7

Introduction to Signalling 8
FDM and In-band Signalling 11
Analog Transmission 12
Digital Transmission 13
Time Division Multiplexing 15
Digital Signalling Systems 16
Access Signalling 18
Trunk Signalling 19
SS7 23
The Paradigm Behind SS7 25

Conclusions 28

Chapter 2 Packet Switching, IP, and the IETF 29

Packet Switching 30
Strengths of Packet Switching 35
Weaknesses of Packet Switching 36
X.25 36

IP and the Internet Paradigm 37
IP Connectivity 37
Intelligence Pushed to the End Systems 38
End-to-End Protocols 41
General Design Issues 42

History of the Internet Protocol Development Process 45
Origins of the Request For Comments (RFCs) 45
Coordination Bodies 46

The IETF 48
The IESG 49
The Technical Work 49
IETF Specifications: RFCs and I-Ds 50

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

For more information about this title, click here

Chapter 3 The Internet Multimedia Conferencing Architecture 55

The Internet Layered Architecture 56
Transport Layer Protocols 57
Real-Time Services in the Internet 59

Multicast 62
Routing Towards Many Receivers 62
Advantages of Multicast 64
Multicast Routing Protocols 65
IGMP 68
The Mbone 70

Transport of Real-Time Data: RTP 70
Jitter and Sequencing of Datagrams 71
Real-Time Transport Control Protocol 73

QoS Provisioning: Integrated Services and Differentiated Services 74
Integrated Services 74
Differentiated Services (DiffServ) 79

Session Announcement Protocol (SAP) 81
Session Descriptions 82

Session Description Protocol (SDP) 82
SDP Syntax 83
SDP Next Generation (SDPng) 86

Real-Time Streaming Protocol (RTSP) 87
Usage Example of the Internet Multimedia Conferencing Toolkit 87

Chapter 4 The Session Initiation Protocol: SIP 89

SIP History 90
Session Invitation Protocol: SIPv1 91
Simple Conference Invitation Protocol: SCIP 92
Session Initiation Protocol: SIPv2 92

Functionality Provided by SIP 94
Session Establishment, Modification, and Termination 94
User Mobility 96

SIP Entities 98
User Agents 98
Redirect Servers 102
Proxy Servers 103
Registrars 105
Location Servers 105

Good Features of SIP 106
SIP Is Part of the IETF Toolkit 106
Separation Between Establishing and Describing a Session 108
Intelligence in the End System: End-to-End Protocol 109
Interoperability 109

Contentsx

Scalability 110
SIP as a Platform for Service Creation 110

Chapter 5 SIP: Protocol Operation 115

Client/Server Transactions 116
SIP Responses 116
SIP Requests 117

Types of Proxy Servers 126
Call Stateful Proxy 127
Stateful Proxy 127
Stateless Proxy 129
Distribution of Proxies 129

Format of SIP Messages 130
SIP Request Format 132
SIP Response Format 132
SIP Headers 134
SIP Bodies 142

Transport Layer 144
INVITE Transactions 144
CANCEL Transactions 148
Other Transactions 150

Detailed Example 151
SIP Call Through a Proxy 151

Chapter 6 Extending SIP: The SIP Toolkit 159

Extension Negotiation 160
How It’s Done 161

Design Principles for SIP Extensions 162
Do Not Break the Toolkit Approach 163
Peer-to-Peer Relationship 163
Independence from Session Type 164
Do Not Change Method Semantics 164

Extensions to SIP 165
The SIP Toolkit 165
Reliable Delivery of Provisional Responses 165
Mid-session Transactions That Do Not Change the State
of the Session 169
Multiple Message Bodies 170
Instant Messages 171
Automatic Configuration of UAs 172
Preconditions to Be Fulfilled Before Alerting 174
Caller Preferences 176
Asynchronous Notification of Events 179

Contents xi

Third-party Call Control 181
Session Transfer 184
Sending Commands 186
SIP Security 187

Chapter 7 Building Applications with the SIP Toolkit 191

Third-generation Mobile Systems 192
Network Domains 193
Call Flow Examples 195

Instant Messages and Presence 199
SIMPLE Working Group 199
Presence Architecture 200
Instant Messaging 201

PacketCable 202
Architecture 203
Call Flow Example 203

PSTN to SIP Interworking 204
Low-Capacity Gateways 207
High-Capacity Gateways 209
SIP Extensions for PSTN Interworking 210
The PINT Service Protocol 213

SIP for Conferencing 214
Multicast Conferences 215
End User Mixing Model 215
Multipoint Control Unit (MCU) 216
Decentralized Multipoint Conference 217

Control of Networked Appliances 219

Appendix Finding Futher Information on SIP 221

IETF Web site 221
Henning Schulzrinne’s SIP Web page 223
Dean Willis’ Web Pages 225
The SIP forum 226
RFC example 227

RFC 229

Acronyms 239

References 245

Index 251

Contentsxii

PREFACE

The Session Initiation Protocol (SIP) has gained a lot of attention over the
last few years. Lately, the decision to use SIP as the signalling protocol to
provide IP multimedia services in the third generation of mobile systems
has dramatically increased the number of people interested in knowing
about SIP. SIP is the protocol that will merge together the cellular and
the Internet worlds. It will provide ubiquitous access to all the services
that have made the Internet so successful . Users will be able to combine
traditional Internet services such as e-mail and the Web with newer ser-
vices such as multimedia and instant messaging.

Although the services that SIP can provide are relatively well known,
there is a lack of knowledge about the protocol itself. SIP is seen by many
people as a protocol that can resolve every problem one could imagine,
when in reality, SIP has a limited well-defined scope. During all the years
that I have been working on SIP standardization, I have heard this and
many other misconceptions several times. That was the main reason that
pushed me to write this book. This book intends to clarify the philosophy
behind SIP.

In order to have a good understanding of a protocol such as SIP, it is
necessary to be able to answer three simple questions: what, how, and
why. This book deals with all three of them, but sets a special focus on the
last one: why. The reason for doing so is from my own experience of speak-
ing with several engineers and programmers. I was surprised to meet peo-
ple that have a great knowledge about what SIP does and how it does it,
but who did not understand the philosophy behind the protocol. They did
not know why SIP was designed like it was. They understood the proto-
col details but were missing the overall picture. The trees did not let them
see the forest. The why part is also very useful for business managers
who do not need to know the protocol details in depth, but need to under-
stand why to use a particular technology in their products. It would be
sad if SIP was used just because it is fashionable and not for all its good
features.

In order to understand why SIP is a good signaling protocol, it is
necessary to know the paradigm behind it and compare it with another
paradigm to see its advantages. That is why Chapter 1, “Signaling in

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

the Circuit Switched Network,” provides an introduction to traditional
telephone signaling. This brief introduction helps the reader understand
why a paradigm shift was needed, and the advantages and disadvantages
of the Internet paradigm.

An introduction to packet switching and to IP has been added at the
beginning of Chapter 2, “Signalling in the Packet-Switched Network.”
This introduction is intended for those professionals who have experience
in the telecom world and are trying to jump into the new datacom tech-
nologies. They will find advantages and disadvantages of packet switch-
ing networks and why IP, and not other network layer protocols, is used
to implement packet based services in modern networks.

The remainder of Chapter 2 and Chapter 3, “The Internet Multimedia
Conferencing Architecture and How Protocols Mature,” set SIP in its con-
text. They describe how SIP interacts with other protocols (the Internet
multimedia conferencing architecture), and how SIP standardization is
carried out within the Internet Engineering Task Force (IETF). This gives
the reader an idea of the different maturity levels of the different SIP
extensions and what they mean. Knowing the Internet multimedia con-
ferencing architecture is useful in order to understand the scope of SIP
and of the rest of the protocols that belong to the architecture. All these
protocols interact among them to provide multimedia services to the
users.

Chapter 4, “The Session Initiation Protocol,” through Chapter 6,
“Extending SIP: The SIP Toolkit,” deal more with what and how, without
forgetting about why. However, these two concepts are kept separate as
much as possible. It is important to distinguish between the functional-
ity provided by SIP, and the protocol details of how this functionality is
achieved. Understanding first what the protocol does, it is easier to study
how it is implemented. Chapter 4 deals with what SIP does wheras Chap-
ter 5, “SIP: Protocol Operation,” explains the protocol syntax. This dis-
tinction is also present in Chapter 6, where several SIP extensions are
explained. Every extension is clearly divided into two sections: the first
one explains what the extension does, and the second deals with its imple-
mentation.

Finally, Chapter 7, “Building Applications with the SIP Tookit,” pro-
vides examples of architectures that have chosen SIP as a signaling
protocol, such as 3G or PacketCable.

Prefacexiv

After reading this book you will have a good understanding of the three
aspects of SIP: what, how, and why. You will be able to understand its role
in different architectures and its interactions with other protocols. Fur-
thermore, you will be able to decide if SIP is the proper tool to use in order
to resolve your problem and if so, what other tools you will also need to
build the architecture that suits your application better. It is good to
always keep in mind that rather than being in an isolated protocol, SIP
is part of the Internet multimedia conferencing architectures—a set of
protocols that combined can be used to provide multimedia services.

Preface xv

FOREWORD

Unbeknownst to those outside the field of telecommunications, a quiet
revolution is taking place. This revolution is aimed at overthrowing the
decades-old technologies, now long past their prime, which are the cor-
nerstone of today’s wired and wireless telecommunications networks. This
revolution will free people from the high cost and low value-add of many
telecommunications services, and bring them into the low cost and high
value-added services that are the norm on the Internet. The revolution is
not being fought with swords or guns, but rather, with technologies—
Internet technologies—which are being used to completely redefine the
architecture of telecommunications networks. At the lead of this quiet rev-
olution is the Session Initiation Protocol (SIP), an Internet standard
developed by the Internet Engineering Task Force (IETF).

Ever heard of SIP? Probably not—and that’s the problem. Up until now,
knowledge of SIP and its related technologies has been the domain of the
technology elite. However, the changes in the telecommunications indus-
try that SIP is causing are important for many people—from technology
managers to businessmen to enterprise network administrators. These
people don’t need to know the details of the technology, but they need to
appreciate its importance and understand how it might impact their
work. That is where this book fits in. SIP Demystified is not a book
for software developers or protocol engineers. It’s a book for a much
broader audience that helps provide context for SIP and an appreciation
for its purpose, basic operation, and relationship to other protocols and
technologies.

Gonzalo Camarillo does an excellent job walking the fine line between
technical completeness and technology overviews. Gonzalo has been an
important contributor to the SIP revolution. He is the author of several
of the key documents being developed within the standards bodies. He is
an active contributor on the mailing lists, and a good teacher for those
who have basic questions. It is this combination of technical depth and
teaching skills that have resulted in a fine book, which I wholeheartedly
recommend to anyone who asks the question, "what is SIP, and why is it
important?"

As one of the co-authors of SIP, I have dedicated several years of my
life to its development. I have seen it grow from an academic technology
to a force that is changing the way telecommunications will work in the

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

years to come. It is truly impressive that throughout its growth, the fun-
damental goals and principles on which the technology was built have not
changed. This has happened because of the cadre of people who have come
to believe in the vision SIP presents, and who have worked to promote it
within their organizations. Gonzalo has captured that vision in a book,
and so I encourage you, reader, to turn the page and learn more about
what the future of telecommunications will look like.

DR. JONATHAN ROSENBERG

CO-AUTHOR, SESSION INITIATION PROTOCOL

CHIEF SCIENTIST, DYNAMICSOFT INC.

Forewordxviii

Signalling in
the Circuit-

Switched
Network

CHAPTER 11

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

The telephone network, also known as the Public Switched Telephone Net-
work (PSTN), reaches almost every country in the world. We can find tele-
phone sets almost in every house, including simple analog phones, more
advanced Integrated Services Digital Network (ISDN) phones, cordless
phones, cellular phones, and even satellite phones. Among technologies,
telephone systems are astonishingly widespread.

All these phones have something in common. They use a circuit-switched
network to communicate between them. The PSTN has been around for a
long time, and its users are happy with it. People can talk to each other
across oceans and still feel in proximity. Even in long-distance calls between
two mobile phones, it is possible to understand what the other person is
saying relatively well.

Besides, the PSTN is a highly-reliable network.When somebody picks up
a phone in order to make a call, most of the time the call goes through. Tele-
phone switches rarely crash, and when they do, backup systems take over
to continue providing service to the users.

In short, people trust the PSTN. They have grown to expect trouble-free
everyday use, and they are confident that in the case of an emergency, the
PSTN will connect them to an ambulance, the police, or the fire department.

Taking into account all these features of the PSTN, one might think that
the procedures and mechanisms used by the telephone network would be
emulated in any network providing a similar service. Since the PSTN works
so well, let us model any voice network after it. Specifically, let us use
PSTN-like signalling protocols—they work well.

This assumption is wrong, however, and we will see why for a different
environment, such as the Internet, PSTN-like protocols are not suitable.
Material differences in the PSTN architecture and the Internet architec-
ture require completely new signalling protocols rather than the evolution
of trusty, old ones.

This chapter contains a brief PSTN-signalling history that explains how
signalling protocols have evolved from analog to digital. We will see that
beyond the differences in transport technology used by the PSTN and the
Internet—the former is circuit-switched while the latter is packet-switched
—differences in their respective paradigms for governance and operation
make different signalling design mandatory.

Chapter 12

The Origins of Circuit-Switching
A telephone network aims to provide its users with certain services. Many
services fall into the category of telephone services, but the first and most
important one is the transmission of voice between users. Any user of the
network has to be able to call any other user attached to it. All telephone
networks must fulfill this requirement.

The first telephone network that enabled two users to communicate con-
sisted of two telephone sets joined by a cable. That system provided both
users of the network with adequate voice service, but as soon as more users
wanted to be able to use the network, the number of telephone sets
increased. The best way to add a new user to the network was to install new
cables from the telephone set of the newcomer to all the already-installed
telephone sets, creating what is known as a fully meshed topology, where
every telephone set is directly connected to every other telephone (see
Figure 1-1).

3Signalling in the Circuit-Switched Network

Figure 1-1
A fully meshed
topology.

Unfortunately, a fully meshed topology presents a number of disadvan-
tages in the telephone context. Failure to scale is a very important draw-
back. An individual connection from each user to any other user who
potentially can be called has to be established. A physical connection to
every single user is affordable as long as the system is small, but as the
number of users grows, the number of connections grows in an exponential
manner. Cables are expensive and difficult to install. Therefore, adding new
users to the network becomes very expensive very quickly.

Cost aside, if a single telephone set has as many cables connected to it as
there are users in the network, routing becomes complicated to manage.
Each telephone set has to maintain a huge routing table that indicates
which cable corresponds to which destination in order to route the calls.

Due to their limitations of scalability and management, early systems
evolved from a fully meshed topology to a star topology. In a star topology,
all telephone sets are connected to a single central unit called a switch (see
Figure 1-2) and all calls are routed through it from source to destination.
The switch connected cable from the call’s originator to cable at the call’s
receiver. At first it was operated manually, by a now-quaint figure known as
a “switchboard operator” who plugged wires into sockets.

Chapter 14

SWITCH

Figure 1-2
Star topology.

5Signalling in the Circuit-Switched Network

Figure 1-3
Hierarchical topology.

Old though it may be, this technology is still in use and still referred to
as circuit switching. Obviously, circuit switching facilitates the addition of
new users to the system, because it reduces the “cost” to a single cable
between the switch and the new telephone set. Management of the system
is streamlined. The switch still has to handle a number of circuits, but the
user equipment—the telephone set—remains simple.

The next step in circuit-switching is to connect together several switches
building a circuit-switched network (see Figure 1-3). In such a network,
each user’s telephone set is connected to the switch nearest to it. That
switch is connected to another, and so on across the system.

In telephony, switches are also referred to as exchanges. Therefore, the
closest switch to a telephone set is called its local exchange. Calls between
two telephones are routed first to the local exchange of the caller and then
traverse other exchanges until reaching the local exchange of the callee,
which can announce the call to him by ringing his telephone. Circuit-
switching overcame the limitations of the first telephone system and
remains the dominant technology for voice transmissions even now. But
circuit-switching technology evolved repeatedly from that very first net-
work, and at present, several hierarchical levels of switches are imple-
mented all together to make up the PSTN, a worldwide communication
network.

Characteristics of
Circuit-Switching
Besides voice transport, circuit-switching is regularly used to transport dif-
ferent types of traffic. Circuit-switched networks transport data between
computers and control signals between terminals, for instance. However, no
matter which kind of traffic is transported, the user equipment is called a
“terminal” and the set of switches is called the “network.”

Usually terminals are manipulated by the end user while the network is
managed by the service provider. The network establishes the communica-
tion path between terminals, whose role is to receive information from the
user and transmit it to the network in the proper format. Terminals also
perform the opposite task: receiving information from the network and
transmitting it to the user. In both cases, it’s the terminal alone that exam-
ines the content of the information being transmitted and performs the nec-
essary operations on it. Conversely, switches establish a dedicated path
between two or more terminals and are not concerned with what they
transmit between them.

We’ve seen that this dedicated path can be as rudimentary as a set of
cables strung between terminals and switches. In more advanced systems,
paths consist of, for instance, a frequency inside a cable, a time slot, or a
wavelength inside an optical fiber. No matter how sophisticated the path,
however, the key to circuit-switching remains the same: switches are obliv-
ious to the contents of the messages they are transporting. They maneuver
connections based solely on the position of the cables (that is, cable �1 has
to be connected to cable �4), the frequency (that is, output from cable �1 at
400 Hz has to be transmitted on cable �4 at 600 Hz), and the time slots
inside a frame. We will see in Chapter 2, “Packet Switching, IP, and the
IETF,” that this is the main difference between circuit-switching and
packet-switching.

Strengths of Circuit-Switching

Circuit-switching provides some good features. These systems are very fast.
Since switches do not examine the contents of the transmission, the deci-
sion on where to send the information received at a certain interface is
made just once, at the beginning of connection, and remains the same for
the duration. Thus, the delay introduced by a switch is almost negligible.

Chapter 16

The dedicated transmission path between terminals provided by circuit-
switching networks is well suited for the analog transmission of voice. After
a circuit has been established, the transmission delay is small and is kept
constant through the duration of the connection. Its suitability for analog
transmissions is of course the key reason why circuit-switching technology
spread so far and wide in pre-digital days. We will see that when new traf-
fic patterns were introduced, including the transmission of data between
computers, circuit-switching began showing its limitations.

Weaknesses of Circuit-Switching

Before an information exchange between terminals can take place, a path
through the network must be established. Setting up a path takes time, and
the actual transmission is delayed until the path establishment phase is
finished (see Figure 1-4).

Note that path establishment delay is distinct from switch delay. By its
nature, establishment delay occurs before any transmission takes place.
The delay introduced by the switches during the transmission of user data
occurs after the path has been established.

Once a dedicated path is established between two terminals, the
resources associated with it cannot be used for another connection until the
path is torn down. Therefore, even if at some point both terminals stop
transmitting, the path stays open and resources allocated to the connection
through all the switches along the path remain in use. That’s a non-efficient
use of available resources, to say the least. This limitation, while not a big
problem in analog voice transmission, becomes very important in digital
transmissions and particularly in data transmissions between computers.

7Signalling in the Circuit-Switched Network

Terminal Terminal

Establishment
delay

Path establishment request

Path established

Transmission of user data

FIGURE 1-4
Establishment delay
in a circuit-switched
network.

Two terminals in the act of exchanging data are actually idle most of the
time, and so are the resources allocated in the switches. Wherever traffic
exchange is bursty and non-uniform, circuit-switching does expend
resources inefficiently. We will see that packet-switching overcomes this
limitation (but only at the cost of slower switching).

To connect terminals across a network, the switches need to know when
to establish the path, when to tear it down, what resources it will need to
command (that is, number of circuits to be used), and where to route the
call. All this information is exchanged between the switches within the net-
work, and also communicated between the terminals and the network, on
every call. Collectively, the information related to the control of the connec-
tion is referred to as signalling.

Introduction to Signalling
The purpose of signalling is to exchange control information between sys-
tems of any kind. Familiar applications of signalling include, among others,
the control of railway traffic and air traffic. When a pilot asks for permis-
sion to land at an airport, he is exchanging signalling information with the
control tower. The control tower then provides the airplane with a time slot
and a runway on which to land. The presence of signalling in telephony
implies that two kinds of traffic are exchanged in a telephone call: sig-
nalling traffic—controlling the establishment and release of the voice path
—and voice traffic. We commonly refer to these different kinds of traffic as
planes. Thus, two planes can be found in a telephone call: the control plane
and the user plane. The control plane handles the procedures controlling
the user plane and the user plane handles the actual data or voice trans-
mission (see Figure 1-5).

The evolution of the signalling plane has been tightly tied to the evolu-
tion of the user plane. New features in the switches could not be exploited
without a signalling system capable of taking advantage of them. New sig-
nalling systems are designed to make optimal use of the latest advances in
the user plane. However, there have also been cases where new signalling
systems were introduced without any progress in the user plane. In these
situations, some other gain—simplicity, efficiency, robustness—was at
stake. To understand how signalling protocols have evolved from the first

Chapter 18

telephone system back in the nineteenth century up to the present is to
understand which gains were achieved and what exactly triggered protocol
design at a certain point of time. SIP is both one such protocol and also a
departure from the evolutionary path.

Local and central battery systems After years of using telegraphs, on
March 10, 1876, Alexander Graham Bell patented electrical voice trans-
mission using a continuous current, and the telephone was born.

Signalling in the early telephone systems was very simple. When the
user picked up the receiver, a circuit closed. The terminal then supplied a
current to the circuit. The action of closing the circuit meant its seizure. A
human operator at the switchboard answered upon seizure of the circuit
and routing was accomplished by telling the operator the identity of the
callee. The operator switched the call manually. This is the Local Battery
system.

Local Battery systems were problematic. Terminals contained batteries,
making maintenance more difficult because it was left in the hands of
users. Since battery technology was not as advanced as in modern termi-
nals, users found the job complicated and were not eager to take it on. The
Central Battery system was devised to make things easier on the users.
Central Battery systems supply current to the terminals from the
exchange. System automation was the next step in making telephones eas-
ier to use. From the installation of the very first exchange in 1878, circuit-
switching had been performed manually. In 1889, Almon B. Strowger
applied for a patent for an automatic telephone electromechanical switch,
and human intervention was no longer needed within the exchanges. Users
acquired a dial tone upon seizure of the circuit. After the provision of a dial

9Signalling in the Circuit-Switched Network

Signalling plane

User plane (voice)

FIGURE 1-5
Two different planes
exist in a telephone
call.

tone by the local exchange, terminals forwarded the digits of the callee’s
telephone number.With this information in hand, the local exchange routed
the call towards the proper destination.

In these first automated systems, the only signalling direction was for-
ward, for example, from the caller’s terminal to the switch. Any information
that had to be transmitted backwards to the user was sent through the user
plane. So if the callee was busy, for instance, a busy tone was sent through
the user plane, and it was up to the user to react by hanging up. The control
plane never knew if the user hung up because he or she decided to abort the
call before the callee answered or because the callee was busy, which proved
to be a disadvantage down the line.

DC and AC Analog Systems The next signalling systems to be devel-
oped were the DC and AC analog systems, so-named according to the type
of current they used. The gain was that DC and AC systems allowed sig-
nalling backwards. Having signalling in the callee-to-caller direction rep-
resents an important saving in some situations, as Figure 1-6 illustrates.

The caller dials a phone number, and each switch in the path between
caller and callee reserves a circuit to transport the voice content of this call.
When the signal arrives at the callee’s local exchange, the final switch in
the path, it locates the connection to the callee’s terminal.The switch checks
the availability of this connection and notices that it is being used for
another call at that moment. In a system that does not enable signalling
backwards, the local exchange then generates a busy tone. This tone is
transmitted to the caller so he or she knows to give up on the call. The caller
is expected to hang up after hearing this tone but may not immediately do
so. Once he does, signalling indicating the caller has gone is sent forward
towards the callee’s local exchange, which at last triggers the release of all
the circuits along the path.

It works, but it entails that many circuits in the network remain engaged
by this connection even after the exchange reports that the caller is
unavailable. DC and AC analogue systems make better use of network
resources. Sending busy status through the control plane allows the user
plane, circuit-switched path for the call to be released. The busy signal that
the caller hears is instead generated by his or her local exchange, and no
resources are reserved unnecessarily while the user is informed about the
status of the call and prepares to react (see Figure 1-7).

Thus, having signalling in both directions helps manage the network
more efficiently. The control plane receives more, and more accurate, infor-
mation about the status of the call.

Chapter 110

FDM and In-band Signalling

Circuit-switching continued to develop in the next decades. Where each cir-
cuit used for telephony consisted of a copper wire, so a switch handling 500
circuits needed 500 cables. Frequency Division Multiplexing (FDM) made it
possible to use a single wire for several simultaneous calls. In FDM sys-
tems, every voice path occupies a different bit of the frequency spectrum
(see Figure 1-8), in effect redefining a circuit as a frequency within a phys-
ical cable instead of the cable itself. FDM was developed around 1910, but
wasn’t actually implemented until 1950. At that point a coaxial cable was
capable of providing 1,000 circuits—a solid gain.

FDM systems demanded new signalling procedures; the signals within a
cable between two switches were needed to control many circuits instead of
one. Switches now needed a way to relate the control plane of a specific call
to its user plane. The solution would prove to be in-band signalling systems,
meaning that signalling is carried on the same frequency as speech—they
travel together in the same circuit.

In simplest terms, seizure of the circuit is marked by a pulse that
launches signal along the very path that later will transport voice. In-band

11Signalling in the Circuit-Switched Network

B.T.

Caller's
local exchange

Callee's
local exchange

Figure 1-7
The callee is busy
and there is
signalling in the
backward direction.

B.T. BUSY TONE

Caller's
local exchange

Callee's
local exchange

BUSY TONE BUSY TONE

Figure 1-6
The callee is busy
and the only
signalling direction is
forward.

signalling is still used at present in some countries, mainly for international
connections.

Although FDM reduced the cost of telephone systems by putting many
connections on the same cable, it proved to be an expensive technology.
FDM uses analog filters to keep different channels separate. The filters are
costly to maintain. They have to be checked periodically—as often as once
a month—to keep them working in the required frequency.

Analog Transmission

From the first, voice transmission was always analog.Another way to say this
is that transmission consisted of sending continuous signals, such as voice,
without regard to their contents (see Figure 1-9). The signal to be transmit-
ted is represented by an electromagnetic wave that moves through the cable,
bearing the information.A recipient needs to recover the original signal from
the electromagnetic wave received in order to possess the message.

Continuous signals have different frequency components, but every sig-
nal concentrates most of its energy within a certain range of frequencies—
the so-called spectrum of the signal. Frequency components outside the
spectrum contain little energy, and thus contribute less to the interpreta-
tion of a certain signal. As a result, it is usually necessary to transmit only

Chapter 112

A

B
FDM link

C
FDM table:
Voice channel A = Frequency 1
Voice channel B = Frequency 2
Voice channel C = Frequency 3

Figure 1-8
FDM system.

the frequency components inside the spectrum for recovery of the original
signal, or, to be precise, a signal very similar to the original.

In analog transmission, the electromagnetic wave obtained from a signal
contains all frequency components of the spectrum. The standard spectrum
for voice transmissions ranges from 300 Hz to 3,400 Hz, and voice trans-
mitted using this range is perfectly understandable by the recipient.

The main advantage of analog transmission is the absence of delay.
Because switches in the transmission path do not add delays to the signal,
transmission speed is effectively the speed of the electromagnetic wave in
the medium. This feature suits interactive communications—where the
parties involved are active senders and receivers—exceptionally well.

Digital Transmission

By now you’ve probably noted a pattern developing whereby advances in
the user plane prompt advances in the signalling plane to take advantage
of them, in turn re-enabling the user plane for growth. The next step in tele-
phony evolution was accordingly the introduction of digital transmission.
Digital transmission changed the way voice was transported and, in so
doing, made signalling protocols evolve dramatically.

Just how did this work? We explained earlier that analog signals take on
continuous values. Conversely, digital signals take on discrete values. A
good example of a digital signal is text. The text is made of letters, and since
every letter is chosen from a set of letters—the alphabet—so, the discrete
values that any letter can take range from “a” to “z.”

Just two values are used in voice digital transmissions: 0 and 1. There-
fore, the information exchanged between systems consists of a stream of 0s
and 1s. Several ways exist for encoding this kind of stream on the medium
being used. One way, among many, is to assign a constant voltage level to 1
and a different voltage level to 0. The receiver can recover the original dig-
ital stream by analyzing the voltage levels received.

13Signalling in the Circuit-Switched Network

Figure 1-9
Analogue
transmission of voice.

However, voice is not a digital signal. It is an analog acoustic signal that
takes on continuous values in the time domain and requires translation
before it can be transported. In order to transport an analog signal over a
digital link, a coder-decoder is needed. A coder receives an analog signal as
input and produces a digital signal as output. This process can be per-
formed using different algorithms. The algorithms for converting voice into
a digital stream are referred to as audio codecs (see Figure 1-10). The most
widely used is the G.711 codec, also known as Pulse Code Modulation
(PCM), which produces 64-kbps streams.

Strengths of Digital Transmission Digital transmission presents
many advantages over analog transmission. First, digital equipment is
cheaper. Stream manipulations can be performed by relatively cheap com-
puters, while analog switches need expensive electromechanical gear. Since
the first digital exchange was installed in 1960 in the U.S., the price of com-
puters has dropped drastically. Second, digital transmission quality is
higher. Analog transmission suffers from signal attenuation, that is, the
strength of the signal decreases with distance. Exchanges employ ampli-
fiers to keep signal strength above an acceptable level, but to do so, they
have to amplify the whole signal. (Remember that exchanges are unable to
examine the contents of analog transmissions). Amplifying the signal as a
whole has the unfortunate result of also amplifying noise, producing a dis-
tortion in the signal received at the destination.

By contrast, digital systems use repeaters rather than amplifiers. A
repeater decodes the stream received and reproduces it on the outgoing
side. Thus the outgoing signal is completely new, and its strength is inde-
pendent of the strength of the signal in the previous link. No noise is added
to the signal in a digital exchange by the transmission process.

Weaknesses of Digital Transmission Regarding delay, digital systems
perform worse than analog systems. The processing of digital signals is

Chapter 114

01110010010011101
Figure 1-10
Digital transmission
of voice.

always slower than the transmission of an electromagnetic wave by an ana-
logue exchange. We will see that the multiplexing mechanism used in dig-
ital transmissions (TDM) also introduces some delays, since the data has
to wait in a buffer for the time slot assigned to.

Although buffer delays exist in every digital network, modern switches
have very high processing power and perform all these operations very
rapidly. Therefore, delays introduced by digital transmission are negligible
for most applications. For instance, for a voice application, transmission
delays higher than 300 ms round-trip make it difficult to maintain a normal
conversation. The delay introduced by digital switching is far below this
threshold.

A more problematic disadvantage of digital systems for transmitting
voice signal is the complexity of the terminal, which has to include a coder-
decoder to convert the acoustic signal into a digital stream.This mechanism
makes digital terminals trickier and more expensive than analog ones. To
avoid terminal complexity, many digital networks implement an analog
interface towards the terminal. The interface between the terminal and
the local exchange, which is called a local loop or subscriber line (see Fig-
ure 1-11), enables the user to retain his or her trusty analog terminal and
still connect to a digital local exchange. the coding and decoding of analog
signals takes place within the local exchanges of the parties conversing.

Reading between the lines, it can be seen that at the time systems were
migrating from analog to digital, the philosophy of the PSTN already was
to design simple user equipment and complex networks. There were some
additional reasons for that back then, including backwards-compatibility
and the price of the terminals, but undeniably this design style persists into
the present.

Time Division Multiplexing

FDM, besides being a expensive technology, also limits multiplexing capac-
ity. Different channels have to use frequencies sufficiently separated to
avoid interference, and the usable frequency range is defined by the band-
width of the medium and by the attenuation. (Attenuation is a function of
the frequency: the higher the frequency, the more severe the attenuation.)
Because high attenuation requires high amplification in the exchanges, the
noise that accompanies the analog signal is also highly amplified, degrad-
ing quality.

15Signalling in the Circuit-Switched Network

Multiplexing limitations are a real drawback for the network and helped
to spur migration away from FDM. The advent of new high-bandwidth
transmission media makes multiplexing essential for efficient utilization of
all the bandwidth available. Time Division Multiplexing (TDM), now the
most widely employed multiplexing mechanism in digital transmissions, is
easier to implement and cheaper to run than its predecessor.

In brief, here is how TDM systems work. Connecting exchanges allocate
time slots between them to certain channels (see Figure 1-12). Only during
that time slot can a switch transmit data from the allocated channel.
Hence, information belonging to the first channel is transmitted in the first
time slot. The second time slot is assigned to the next channel, and so on.
When all channels have had a time slot—an opportunity to transmit—the
cycle begins over with the first channel. The receiving side is synchronized
with the sender side, so it can mark the end of one time slot and the begin-
ning of another.

TDM too requires the use of buffers in the exchanges. An exchange has
to store the information ahead of transmission in anticipation of the proper
time slot’s arrival. This, as explained previously, adds some small, but not
onerous, delay to the switching process.

Note that the predominant transmission technique for telephony pro-
vides 64-kbps channels, exactly the same data rate as the output of PCM
codecs. This makes these channels perfectly suitable for the digital trans-
mission of PCM-encoded voice.

Digital Signalling Systems

The appearance of digital transmission made upheaval in signalling sys-
tems almost inevitable. Consider the fact that analog systems use tones and

Chapter 116

Analog
terminal

Digital/analog
conversion

Analog
local loop

Digital
transmission

Analog
local loop

Digital/analog
conversion

Analog
terminalFigure 1-11

Analog local loop.

17Signalling in the Circuit-Switched Network

pulses for signalling. A pulse occupying a certain frequency means seizure
of circuit and tones are usually employed for transmitting addressing infor-
mation. The amount of signalling information that can be transmitted this
way is quite low. Therefore, analog signalling systems were not only expen-
sive but also inefficient exchange-to-exchange. Digital transmission, of
course, increased the amount of information to be carried by the control
plane. Digital signalling enabled switches to exchange bit streams in place
of discrete pulses. Just as combining letters according to certain syntactic
rules can create first words and then sentences, defining rules for bit
streaming can create signalling messages. A signalling message contains
much richer information than a pulse or a tone can. Signalling protocols
codify the rules to form messages from bit streams and their semantics. It
is protocols that spell out the actions to be taken under any circumstances
known to prevail within exchanges. These actions are usually described by
means of protocol state machines, so state machines can be thought of as
the set of actions triggered by a certain event in a certain state.

Access and Trunk Signalling The first digital signalling protocols were
implemented between exchanges. But the subscriber line remained analog,
and thus so did the signalling procedures, leading to a disjunction between

A

B
TDM link

C
TDM table:
Voice channel A = Time slot 1
Voice channel B = Time slot 2
Voice channel C = Time slot 3

Figure 1-12
TDM system.

access signalling—signalling that passes between terminals and the
network—and network signalling, also known as trunk signalling (see
Figure 1-13). Later on, when the subscriber line became digital, this dis-
tinction between access and trunk persisted, and different protocols were
used for access and for trunk signalling. The motivation was to permit com-
plex exchanges but keep terminals relatively simple, enabling the network
operator to control almost everything happening in the network.

The interface between terminals and the network is called user-to-
network interface (UNI), and the interface between exchanges is knows as
network-to-network interface (NNI). Protocols used in the latter are more
complex because more information flows between switches than flows to
the terminals. Terminals are only informed about what is essential in order
to keep the user updated about the status of a call. This paradigm, consist-
ing of an intelligent network and dumb terminals, opposes the IP paradigm
in general, and the SIP paradigm in particular.

Access Signalling

What kind of control information is signalled in analoge subscriber lines?
It consists of off/on hook signals, dialed numbers, and various tones that
inform the user about call status. Off/on hook signals are used to request
dial tone for a call attempt and to accept and terminate calls by picking up
the phone and by hanging up respectively. The dialed numbers are trans-
mitted from the terminal to the local exchange through pulses or tones.
(Old systems employ decadic pulses, incidentally, while newer terminals
implement Dual Tone Multi-Frequency [DTMF] tones.) Tones also convey
status information to the user plane. Standard tones have been defined
(such as busy tone or alerting), but they sometimes vary from country to
country.

Chapter 118

Terminal
Local

exchange

Access
signalling

Trunk
signalling

Access
signalling

Local
exchange TerminalFigure 1-13

Access and trunk
signalling.

The implementation of digital terminals made it necessary to develop
digital access signalling systems. Digital Subscriber Line No. 1 (DSS-1) is
the most widespread. It is used in the ISDN and also in mobile networks;
signalling between Global System for Mobile (GSM) communications
mobile terminals and Base Transceiver Stations (BTS) is based on DSS-1.
Figure 1-14 is an example of a DSS-1 call flow. It shows the message
exchange between a terminal receiving a call and its local exchange.

DSS-1 is definitely richer than any analog signalling system but not as
rich as commonly used trunk signalling systems, which we will look at next.

Trunk Signalling

Interexchange signalling in circuit-switched networks is referred to as
trunk signalling. Two types exist: Channel Associated Signalling (CAS) and
Common Channel Signalling (CCS). CAS systems preceded CCS systems,
which offer better capacity, reliability, and flexibility, and at present are pro-
gressively being replaced by them.

19Signalling in the Circuit-Switched Network

Exchange Terminal
Local

exchange

TRUNK SIGNALLING

TRUNK SIGNALLING

TRUNK SIGNALLING

TRUNK SIGNALLING

(1) SET UP Call attempt is
received.

The phone begins
ringing.

The user
picks up.

Remote user
hangs up.

(4) CONNECT ACK

(2) ALERT

TRUNK SIGNALLING

TRUNK SIGNALLING

TRUNK SIGNALLING

(5) DISCONNECT

(7) REL. COMPLETE

(6) RELEASE

(3) CONNECT

Conversation

Figure 1-14
DSS-1 message flow.

Channel Associated Signalling In CAS systems, the signalling and the
voice associated with a certain call are transferred along the same path. In-
band signalling, which was described previously, is an example of CAS.

CAS can be used in both analog and digital systems. Digital systems that
use CAS implement a specific channel for line signalling. Line signalling
controls the establishment and release of voice channels (see Figure 1-15).
The line signalling associated with all voice channels in a trunk is trans-
ported in a single channel. European systems, for instance, reserve time slot
number 16 in each PCM link. Thus, the sixteenth time slot carries line sig-
nalling associated with channels 1 through 15 and 17 through 31 (time slot
0 is used for frame synchronization). Some examples of line signalling are:
idle line, seizure of line, answer, and charging pulses.

On the other hand, register signalling, which handles addressing infor-
mation, is transported through the voice path. Some examples of register
signals are: callee’s number, callee’s status, and caller’s number. Since reg-
ister signals are sent only during call set-up, when there is still no voice
transfer, they do not interfere with the user plane.

Chapter 120

Exchange Exchange

Voice channel 31

Voice channel 30

Voice channel 18

Voice channel 17

Voice channel 15

Voice channel 14

Voice channel 2

Voice channel 1

Synchronization channel 0

SIGNALLING CHANNEL 16

Figure 1-15
Channels in a
PCM link.

21Signalling in the Circuit-Switched Network

Common Channel Signalling (CCS) In CCS, voice and signalling, as
a rule, traverse different paths through the network (although their paths
are still related to a certain extent). All the nodes handling media also han-
dle signalling, so that, if a voice path traverses two exchanges, these two
exchanges will also receive the associated signalling. How signalling is
routed between them, however, is different in CCS than other systems.
After leaving one exchange in the voice path, signalling can traverse a set
of intermediate nodes, none of which handle voice before reaching the next
one. We call these intermediate nodes Signalling Transfer Points (STPs).

STPs are a special feature of CSS, necessitating the implementation of a
dedicated network optimized for signalling transport, and thus capable of
better performance and reliability than shared voice/signal networks.

Dedicated Signalling Network Signalling traffic associated with a call is
bursty in nature. It is very intense in certain phases of the call, like call
establishment or call release, but otherwise quite low once the call is estab-
lished. Bursty is good in that it enables a single signalling channel to con-
trol several voice channels. In practice, one signalling channel can handle
several thousands of voice time slots.

Implementing a signalling network independent from its voice counter-
part enables service creation and makes interworking different networks
easier. SS7 is the most widespread CCS system at present, and it is SS7 in
particular that allows the creation of services that go beyond basic CAS

STP STP

Voice and
signalling

Voice and
signalling

Voice and
signalling

Signalling path

Voice path

Figure 1-16
Signalling Transfer
Points.

connections. The capability to signal between dedicated network nodes that
do not handle voice is in fact the basis of all the advanced services provided
by the current PSTN. By implementing service logic and switching logic
separately, we encourage service creation and user plane manipulation to
evolve independently.

For instance, when someone dials a toll-free number, the system must be
able to look up the phone number dialed by the user (it’ll be a 1-800 num-
ber in the United States) and translate it into the (geographically deter-
mined) number of the company the user wants to reach. This database look
up is performed entirely through signalling messages (see Figure 1-17).

Toll-free and other services can be implemented thanks to the separation
between the signalling and the voice path. Otherwise, it would be necessary
to route the voice path towards the database and then back from it in order
to perform the number look-up, leading to a severe decrease in voice qual-
ity experienced by the caller.

Today, two main CCS systems are in use: SS6 and SS7. SS6 was stan-
dardized in 1968 and was meant to be used in international connections.
SS7 was standardized in 1980 and remains the dominant signalling system
at present.

Chapter 122

Database
(just signalling)

Voice and
signalling

Voice and
signalling

Voice and
signalling

Signalling path

1-800-55-5555
1-212-555-5544

Voice path

Figure 1-17
User calling a toll free
number.

SS7

SS7 provides both circuit-related and non-circuit-related signalling.
Circuit-related signalling is, as its name suggests, associated with the
establishment of a voice channel. But frequently no voice channel has to be
established—as when the system consults a routing table—and this kind of
query can be handled by non-circuit-related signalling. As an enabler, non-
circuit signalling was a vital step toward mobility.

Let’s first look at circuit related signalling. ISDN User Part (ISUP) and
Telephone User Part (TUP) are the relevant SS7 protocols in this regard. In
the last specifications, ISUP included all the functionality supported by
TUP, plus more features such as the capability to transfer user-to-user
information, so ISUP is sufficient for our discussion here. ISUP is actually
a generic name for a protocol which has many flavors in many different
countries. When carriers want to implement a new feature, they often use
non-compatible extensions that cause interoperability problems, and in so
doing, create a variety of local ISUP flavors. Naturally, national variants of
ISUP are incompatible, so an international version of ISUP is used to inter-
connect networks with ISUP variants. Gateway switches between them
understand/support both international ISUP and the specific ISUP imple-
mented in the network and perform translations between them.

The drawback of this arrangement is that international ISUP is com-
paratively feature-poor, limiting network services to users connected to the
same network. For example, users in Spain must choose among an avail-
able set of services for calls within Spain, because the signalling protocol
used for those calls is the Spanish ISUP. Users in Brazil have another set
of services available for their internal calls. But services can’t extend to
calls between both countries, because there’s no feature transparency
between both flavors.

Supplementary Services Functionality provided by ISUP can be
divided into three groups: basic services, circuit management, and supple-
mentary services. Basic services include the basic call establishment to pro-
vide voice service.

ISUP circuit management functions include blocking and unblocking cir-
cuits and establishing, releasing, and testing circuit-switched paths. The
same protocol used for establishing calls is also used for managing network
resources.

23Signalling in the Circuit-Switched Network

Supplementary services are more varied; examples are call waiting, call
transfer, and conferencing. These supplementary services are undeniably
useful and many users take advantage of them. However, gaining access to
them is pretty complicated. Because the interface used for this purpose is
usually the keypad of a telephone set, the user has to learn different codes
for different services. If the service is not accessed very often, remembering
codes becomes difficult. A non-atypical example of service invocation is typ-
ing “*22� telephone number �” in order to turn on call forwarding, compli-
cated enough that it will probably require the user to look up procedures
before nearly every forward. We will see that the introduction of better user
interfaces not only makes for more frequent usage, but also makes protocols
evolve more rapidly, since the users can use newly introduced features in a
more friendly way.

ISUP supplementary services are implemented in a distributed manner.
Users gain access to new services when the local exchange to which they
are connected is upgraded to support new features. Therefore, service avail-
ability depends on the local exchange and its business plan. Moreover, not
all users of the network have access to the same services since all the local
exchanges of the network cannot be upgraded at the same time and with
the same version of software and the same hardware. Even users accessing
the same service might expect different performance behavior, depending
on which switch they are requesting the service from.

Intelligent Network (IN) Services These limitations of ISUP with
respect to service provision prompted implementation of the Intelligent Net-
work (IN) services, which utilizes Intelligent Network Application Protocol
(INAP). Although ISUP services were distributed, IN services are clustered

Chapter 124

Spanish ISUP Brazilian ISUP

Gateway

International
ISUP

Gateway

Figure 1-18
Gateways perform
translations between
national flavors and
international ISUP.

in a centrally located node. This node, called Service Control Point (SCP),
can be accessed by any user in the network, so providers can deliver new
services simply by upgrading the node—a big advance in service manage-
ment. Services are implemented in the SCP with scripts—a set of rules and
instructions that contain the particular service logic. Scripts come in two
types: system and group. The system script performs number analysis in
response to the number entered by a user, and then calls the proper group
script to execute the actual service logic.

Distributed throughout the network are a number of IN service triggers
called Service Switching Points (SSPs). An SSP analyzes the number
entered by the user and decides whether intelligent network services are
needed. It then contacts the SCP, which in turn determines the actions
required to provision the service invoked.

The Paradigm Behind SS7

We’ve already touched on how signalling in the PSTN has evolved from its
analog origins advanced. Now let’s analyze the architectural principles
behind the telephone network and how they differ from those used to
design the Internet. This comparison will go a long way toward explaining
why SIP is a true revolution, and not an evolution of existing signalling
systems.

Two main architectural differences exist between the PSTN and the
Internet:

� Intelligence in the PSTN is concentrated in the network rather than
the terminals.

� Access to the network and the services provided are tightly related.

Intelligence Inside the Network SS7 makes a clear distinction
between terminals and the network. It operates in the network—trunk sig-
nalling—while other protocols like DSS-1 bridge the network and its ter-
minals. SS7 proposes an architecture that enables the use of very simple
terminals with limited responsibilities. On the Internet, the opposite holds
true. Intelligence is pushed to end-user equipment, and the network is kept
as simple as possible. We will see in a later chapter that this enables still
faster and more flexible implementations of new services.

25Signalling in the Circuit-Switched Network

Following out the logic of the Internet paradigm, a signalling protocol
should support intelligent end systems instead of building a network that
makes decisions on the user’s behalf. As we have seen, protocols in the
PSTN do not meet this criterion. Some systems using SS7 such as GSM
resemble master/slave architectures, where a node in the network—the
Mobile Switching Center (MSC)—sends commands to the GSM terminal,
which obeys unconditionally. This architecture leads to a network that
makes assumptions about what the user wants, instead of letting the user
dictate what he wants. When end-to-end services are implemented in such
a network, unintended effects sometimes occur.

Consider, for instance, a call between two GSM terminals (see Fig-
ure 1-19). GSM terminals use GSM codecs for encoding the voice. The MSC
that handles the caller’s terminal decides, on behalf of the terminal, that
transcoding from the GSM codec to PCM—the codec used in the fixed
PSTN—is needed. When the call reaches the MSC handling the callee’s ter-
minal, it performs the opposite transcoding, from PCM to GSM, before at
last sending the voice to the terminal. Unhappily transcoding notably
reduces the voice quality, and when it is performed twice, as in this sce-
nario, its effect is amplified.

This example shows clearly that end-to-end services are better imple-
mented using end-to-end protocols, which would enable both terminals to
negotiate the codec to be used, avoiding the situation we’ve just examined.

Reliability Because the PSTN concentrates system intelligence in some net-
work nodes, a failure in one of the nodes means disruption of service for the
user. Consequently, network nodes must be highly reliable.Techniques such
as processor redundancy ensure that a certain network node does not just

Chapter 126

GSM GSMPCM

GSM
GSM

MSC MSC

Figure 1-19
A call between GSM
mobiles.

fail. However, implementing nodes that (almost) never fail results in a sig-
nificant increase in equipment costs.

We will see that on the Internet, since the intelligence is pushed to the
terminals, failure in a network node such as a router is usually not critical.
Other nodes can take over its task. Here reliability is obtained by imple-
menting end-to-end services in which a network failure won’t lead to a loss
of state information essential for the service. As long as the end systems do
not crash, the service can still be provided.

Access Tightly Tied to Service Provision We have seen how PSTN
signalling has evolved throughout the years, and why its evolution has been
closely related to that of the user plane. When new multiplexing techniques
or transmission mechanisms are created for the user plane, signalling pro-
tocols have to evolve to exploit the new mechanisms. Traditionally, new sig-
nalling protocols were developed in order to carry new information about
the user plane.

Signalling protocols specify the types of user plane that can be used in
conjunction with them in detail. For instance, international ISUP defines
three types of user plane: 64-kbps unrestricted, speech, and 3.1-kHz audio.

This is because, in the PSTN, access to the network and service provi-
sion is coordinated. Therefore, if a user accesses the PSTN, the services he
or she is able to access will be those provided by the protocol used for
access. If DSS-1 is used, for instance, the caller will be provided with a
voice channel. He or she cannot then access the PSTN and request another
kind of service.

In the next chapter, we’ll see that on the Internet environment, access
and service provision are completely separated. A user can (and often does)
connect to the Internet through a particular Internet Service Provider (ISP)
and get e-mail services through an Internet portal. Access provider and ser-
vice provider in this situation are different.

As one might expect, the Internet promotes a different approach to
design signalling protocols from the PSTN. We will see that SIP does not
restrict the number of types of sessions that can be established. A caller can
use SIP to establish a VoIP session, but he can also use SIP in order to
establish, say, a gaming session. SIP could even be leveraged to establish a
traditional telephone call. Thus, Internet protocols are implemented in a
much more modular way than PSTN protocols.

27Signalling in the Circuit-Switched Network

Conclusions
We have seen that the PSTN implements the intelligence of the system in
the network rather than in the terminals. In addition, signalling related to
call establishment is tightly tied to management of the user plane. This
overloads protocols and makes them less general for use in another type of
network.

Taking the previous statements into consideration, we infer that the par-
adigm behind SS7 does not suit IP networks, which are designed for maxi-
mum flexibility. SS7 is an excellent performer in circuit-switched networks
but cannot take advantage of the very flexibility that IP networks provide.
Therefore, signalling protocols to be used in IP environments need to be
designed keeping the IP paradigm in mind. It will be seen that SIP suits it
very well.

Chapter 128

Packet
Switching, IP,
and the IETF

CHAPTER 22

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

In this chapter, we will learn how the Internet is built, how packet switch-
ing works, and how Internet protocols are designed. This information is
vital context for understanding the motivation behind the way the Session
Initiation Protocol (SIP) works.

In addition, a familiarity with how the Internet Engineering Task Force
(IETF) works emphasizes how mature SIP and its different extensions
really are. It is important for basic IP literacy to know the process that
every Internet protocol follows before becoming an Internet standard.

Packet Switching
We saw in Chapter 1, “Signalling Protocols in the Circuit-Switched Net-
work,” that circuit switching was originally developed for analog transmis-
sions. Circuit switching provides a dedicated path from source to
destination that is suitable for transmitting continuous analog signals such
as voice. Frequency Division Multiplexing (FDM) was the most widespread
multiplexing technique in circuit-switched analog networks.

The appearance of digital technology enabled circuit switching to evolve.
Information is transmitted between systems in binary format using 0’s and
1’s. Network nodes can easily store digital data and resend it without
degrading the quality of the data. This capability enables the use of multi-
plexing techniques that are more efficient than FDM, such as Time Division
Multiplexing (TDM).

However, even TDM systems make rather inefficient use of the network
resources. Voice transmissions fail to use all the available bandwidth in a
circuit, none of which can be reassigned for any other purpose.

As if that weren’t enough, data communications brought new communi-
cations patterns into the picture. Data traffic is bursty and non-uniform.
Terminals do not transmit continuously, but are idle most of the time and
very busy at certain points. Data rates are not kept constant through the
duration of the connection either; they vary dynamically. A particular data
transmission has a peak data rate and an average data rate associated to
it, and these are not usually the same.

Employing dedicated circuits to transmit traffic with these characteris-
tics is a waste of resources, as we can see in Figure 2-1. The circuit in the

Chapter 230

figure provides 64 Kbps continuously, but the data rate needed by the sys-
tems communicating is rarely 64 Kbps; it is usually less and sometimes
more. The figure also shows that the available capacity that is not in use by
the system at a certain moment is simply lost.

Packet switching was first designed to fulfill the requirements of bursty
traffic presented by data. Although the first papers about packet-switching
technology appeared in 1961, the first packet-switching node was not imple-
mented until the end of the 1960s. In packet switching, the content of the
transmitted data determines how network switching is performed. The
source nodes chunk the information that will be transmitted into pieces
called packets. Then the information needed to route each packet to its des-
tination (such as the destination address) is appended to the packet, form-
ing the packet header.The packet is sent to the first network node; in packet
switching, network nodes are referred to as routers. Figure 2-2 illustrates a
network of routers. When the router receives the packet, it examines the
header and forwards the packet to the next appropriate router. This process
of looking up the header of the packet is performed in every router in the
path until the packet reaches its destination. After reaching the destina-
tion, the destination terminal strips off the header of the packet and obtains
the actual data that was originated at the source.

31Packet Switching, IP, and the IETF

Available capacity
provided by the circuit

Kbps
Capacity used
at a certain moment

Unused capacity = wasted capacity

64 Kbps

Time

Figure 2-1
Inefficient use of the
network capacity.

Datagrams Routing in packet-switched networks can be performed with
datagrams or virtual circuits. Networks using datagrams make routing
decisions based solely on the header of the packet that will be routed. The
header is examined and the packet is forwarded to the next proper hop. Dif-
ferent packets addressed to the same destination might take different
routes through the network, enabling load balancing. Packets can avoid
congested points in the network by taking alternative paths. As a conse-
quence, packets taking different routes will experience different delays, and
it’s entirely possible for packet �5, which was sent later than packet �1, to
take a faster route and arrive earlier than packet �1. Out-of-sequence
arrival of datagrams is remedied by the destination, which reorders them
before delivering them to the user.

Figure 2-3 shows how the datagram approach works in the network.
Datagrams traveling from A to B are routed towards B based on the header

Chapter 232

Data

Header Data

Data

Header Data Header Data

Header Data

Header Data

Header Data

ROUTER

ROUTER

ROUTER

ROUTER ROUTER

ROUTER

ROUTER

Figure 2-2
Network of routers.

of each particular datagram. We’ve already recognized that a particular
router might decide to route datagrams towards B using alternative paths.
The result of this approach is that datagrams reaching B have traversed
different paths and therefore might have experienced different delays.

Virtual Circuits Virtual circuits behave more like circuit switching.
Routing decisions are made based on the header of the packet that will be
routed and on the previous packets that traversed the router.

The source, prior to any data transmission, sends a virtual-circuit estab-
lishment request to the network. The network then routes the packet con-
taining the request towards the destination and assigns a virtual-circuit
identifier to the path. Upon reception, the destination confirms the estab-
lishment of the virtual circuit by sending an acknowledgement packet to
the source. Once the virtual circuit is established, all the packets carrying
the data that will be transmitted will be routed through the same path.

33Packet Switching, IP, and the IETF

Data

Destination: B Data

A

B

Data

Destination: B Data

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 2-3
Network using
datagrams.

Packet headers on the path incorporate the virtual-circuit identifier that
was assigned previously, and routers forward packets accordingly.

Figure 2-4 shows a network based on virtual circuits forwarding packets
from A to B. All packets follow the path of the first packet.

Differences Between Datagrams and Virtual Circuits Perhaps the
most important difference between datagrams and virtual circuits is the
state that each requires the network to store. Datagram routing requires
no state information (besides routing tables) inside the network. Networks
handling datagrams are stateless in the sense that once a routing decision
is made, the router does not store the result in order to make subsequent
decisions. Conversely, networks dealing with virtual circuits must store the
state of virtual circuits and identifiers to match incoming packets to the
proper vitual circuit. Therefore, virtual-circuit networks implement more
intelligence in the network than datagram networks.

Each of these approaches to packet routing presents advantages and dis-
advantages. Datagrams do not require any establishment time prior to the

Chapter 234

Data

A

B

Data

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Virtual Circuit id: 1 Data

Virtual Circuit id: 1 Data

Figure 2-4
Network using virtual
circuits.

transfer of user data, whereas virtual circuits have to be requested and
established before any user data can transmit. When a terminal wishes to
send packets to a number of different destinations, this establishment delay
is present every time a new destination address is used. In such situations,
datagrams provide more flexibility.

On the other hand, once a virtual circuit is established, it usually pro-
vides lower overhead than datagrams because headers have less to carry;
they just carry a virtual-circuit identifier. Thus, for long transmissions, net-
works using virtual circuits are a better choice.

Datagrams take advantage of dynamic routing in the network. If a node
in the network fails or the network becomes congested, packets can imme-
diately take alternative routes to avoid stress points, without needing to
establish a new circuit. Load balancing is also enabled; datagrams headed
for the same destination can take different paths to distribute the network
load more evenly. Virtual circuits can handle some load balancing, but
when packets always take the same path, redistribution becomes more
complicated.

Strengths of Packet Switching

Efficiency and suitability are the reasons why packet switching compares
favorably to circuit switching. It returns unused resources promptly to the
network. Packet switching also provides data rate adaptation between dif-
ferent terminals. Routers are designed to buffer incoming packets until
they can be sent on the outgoing interface, so the incoming data rate is not
necessarily the same as the outgoing data rate. This enables terminals
using completely different data rates to communicate. In effect, the network
performs data rate conversion.

Price is another strength. In general, packet-switching equipment costs
less than circuit-switching gear because it’s simpler. A router is basically a
computer with several network interfaces attached to it. It receives packets
from one interface, analyzes the headers, and forwards them through the
proper outgoing interface. Falling computer prices in the last few years
directly benefit packet-switching nodes.

35Packet Switching, IP, and the IETF

Weaknesses of Packet Switching

We’ve cited more delay and higher overhead as the two primary reasons
why packet switching may not perform as well as circuit switching under
certain circumstances. Circuit-switching nodes do not examine contents of
the information transferred at all, whereas packet-switching routers exam-
ine the headers of every packet before forwarding them. This process takes
necessarily longer than, say, just switching information from one time slot
to another in a TDM network. Besides, packets that will be forwarded
through a certain interface in a router must line up in the outgoing queue
of that interface. There, they wait until all of the previous packets are gone.
When the network has a heavy load, router queues are usually full, which
is compounded by the fact that packets have to queue in each and every
node they traverse. It is possible to mitigate the delay introduced by imple-
menting different priorities for different types of traffic in the queues, for
instance, but these delays are inherent to packet switching and can’t be
eliminated altogether. How much of a disadvantage is the overhead intro-
duced by full-packet headers? The headers, of course, consume network
resources, and if the payload of a packet is small enough, the header can
actually outweigh it. For instance, if a 20-octet header is used to transfer 5
octets of user data, the network will transmit a packet of 25 octets, in which
just 5 octets are user data.

X.25

In the 1970s, the telephony carriers developed packet-switched networks
based on virtual circuits. These networks offered many similarities to the
public-switched telephone network (PSTN) and a smart network. The spec-
ification X.25 defined the interface between the terminals and the network
(user-to-network interface), and X.75 defined interactions between nodes in
the network (network-to-network interface). Networks implementing these
specifications are colloquially known as X.25 networks.

X.25 networks provide high functionality to terminals. Network nodes
perform error detection by exchanging acknowledgment messages to
ensure that the information transmitted through the link has not been cor-
rupted. Terminals only have to release the data, and the network performs
flow and error control until the data is safely delivered. As we observed in
the telephone network, a network providing high functionality enables the
implementation of simple, reliable terminals to make use of it.

Chapter 236

IP and the Internet Paradigm
X.25 networks present some weaknesses. Overloading the network with
extraneous tasks such as flow control reduces its performance. Thus,
packet-switched networks implemented using the PSTN paradigm did not
exploit all the possibilities this technology offers. A paradigm shift was
needed in order to make the best use of the newly developed technologies.
This new paradigm, of course, is the Internet paradigm, and its main pro-
tocol is Internet Protocol (IP).

IP Connectivity

The Internet differs from other networks in that its sole purpose is provid-
ing connectivity. (The purpose of the PSTN, for instance, is providing tele-
phone services and the purpose of the TV network is providing broadcasts.)
A variety of services such as e-mail, the World Wide Web, videoconferencing,
and file transfer are implemented based on end-to-end IP connectivity
(Figure 2-5).

In order to achieve true end-to-end connectivity, a common end-to-end
protocol is implemented at the network layer—the Internet Protocol (IP)
[RFC 791]. The implementation of IP by all systems within the network has
two advantages:

� The network is independent of the underlying technology.

� Applications can make use of a common IP infrastructure.

From a telecom perspective, IP infrastructure is quite a departure.
Specifically, it enables us to connect networks that use different link-layer
technologies to build a homogeneous network at the IP layer despite het-
erogeneous lower layer technologies (Figure 2-6). Another gain coming from

37Packet Switching, IP, and the IETF

[...]Web

IPconnectivity

e-mail VoIPFigure 2-5
All Internet services
are based on end-to-
end IP connectivity.

Chapter 238

Ethernet

IP-connectivity

Internet applications

End system End system

End-to-end application

Common IPlayer

Multiple lower-layer technologiesATM Dial-up

Figure 2-6
End-to-end IP
connectivity over
different lower layer
technologies.

the use of a single protocol at the network layer is that any new lower layer
technology can be used to transport IP traffic.

Currently, IP traffic travels on top of, among others, Asynchronous Trans-
fer Mode (ATM), frame relay, leased circuits, optical fibers, and Ethernet
Local Area Networks (LANs). In the future, IP will most likely run on top of
newly developed high-speed digital technologies as a matter of course.

Once end-to-end connectivity is bestowed by the use of IP in every
system of the network, IP becomes a common platform to develop applica-
tions and services. As with many protocols, developers must understand
the ideas behind IP architectures before they can put them to good use,
and those ideas invariably encompass a way of thinking that is worth
examining.

Intelligence Pushed to the End Systems

An IP network consists of a set of intelligent hosts connected to a dumb net-
work of routers that just provides datagram transmission—unreliably at
that. IP is used at the network layer by both routers and hosts, relegating
intelligence to the end systems. End systems are responsible for controlling
IP network traffic, including end-to-end flow control and error detection.
The router network is only required to undertake one simple task as effi-
ciently as possible: the unreliable delivery of datagrams to the destination
end system. End systems only know the behavior of the end-to-end traffic.
The network does not send any notifications to the end systems indicating
whether or not a packet has been delivered.

Consequently, IP networks are almost stateless; they do not need state
information in order to route packets towards their destination. This lack of
state in the network makes node failures less dramatic because they do not
store any state information necessary for end-to-end communication. This
represents an interesting approach to engineering high availability. When
some area of the network fails for any reason, the traffic between end sys-
tems is simply rerouted to avoid that area. Other routers can pick up the
task of routing datagrams that were previously handled by the failed
routers because no state information needs to be transferred between them
for routing to resume. Thus, high availability is achieved by provisioning
multiple paths rather than trying to implement fail-safe routers, which is a
much harder job.

Figure 2-8 shows the chain of events when a router fails between A and
B, and traffic between both nodes must be redirected. Failure in the router
does not break the traffic flow between both end systems.

39Packet Switching, IP, and the IETF

The Internet

Figure 2-7
A dumb network
with intelligent
end systems.

Note that although it is correct to state that IP networks do not store
state, this doesn’t imply that they are stateless. Some state is always
needed in order to be able to route datagrams. For instance, when routing
protocols distribute new routes to different destinations, the routers must

Chapter 240

A

BROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

A

BROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

A

BROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Router Failure

Datagrams are routed through an alternative path.

Figure 2-8
Router failure.

store this information. Another example where state information is stored
in the network is header compression in low-bandwidth point-to-point
links. Both ends of the link store information in order to perform the header
transfer. This happens, for instance, when encoded voice is transferred
through a radio interface. In general, however, IP networks tend to keep the
state information stored inside the network at minimum in order to scale
better and to be more robust.

End-to-End Protocols

The presence of an IP layer common to all nodes and the concentration of
intelligence in the end systems make IP an excellent platform for service
creation, and a wide range of applications is already implemented on top of
IP. Application development has as many approaches as practitioners, but
in order to take full advantage of all the good features IP offers as a plat-
form, developers are often advised to follow certain general design rules,
which constitute the so-called IP way.

At this point, I want to emphasize that the importance of IP and the
Internet (the largest worldwide IP network) is in part a function of
its design rules and the way Internet standards are developed. IP is not
just a network-layer protocol. IP is a completely new way of developing
technology.

Perhaps the best-known rule of thumb is to try to mirror the behavior of
IP by implementing intelligent end systems and a relatively dumb network.
This practice encourages the design of end-to-end protocols at layers above
IP, where they can deliver better end-to-end functions.

The terminal usually has the best knowledge in the system to provide
the service that the user wishes to have. The network does not make unnec-
essary assumptions about what the user wants, but it provides transmis-
sion at a fairly predictable level. Another reason for using upper-layer
end-to-end protocols is end-to-end security—security that doesn’t depend on
any (vulnerable or fallible) mechanism provided by the network. For appli-
cations that are secured this way, the information flowing between end
systems is encrypted and/or signed by the end systems themselves. In the
case of encrypted messages, the network cannot access the contents trans-
mitted. In the case of digital signatures, nothing outside the end terminals
can modify the messages. In both situations, end-to-end protocols are the
only means to provide end-to-end security without impinging on the func-
tionality required for each application.

41Packet Switching, IP, and the IETF

General Design Issues

The IETF proffers a set of guidelines for protocol design in RFC 1958 [RFC
1958]. The express purpose of these guidelines is to improve the technical
quality of the protocols documented in Request For Comments (RFCs)
and to save time in the standardization process. If a protocol is properly
designed from the beginning, the community does not need to give as
much feedback to the authors and it can advance in the standards more
efficiently.

The IETF Toolkit The design process followed by the IETF is usually
referred to as a bottom-up approach in order to distinguish it from
approaches that start by defining an architecture and then design more
granular protocols between the nodes. The bottom-up approach provides
protocols that solve specific needs of the community. A concrete protocol
resolves a concrete problem, so all of these protocols taken together can be
viewed as a toolkit, as shown in Figure 2-9.They can be (and often are) com-
bined in different ways to resolve larger problems downstream.

The advantage of this approach is that a protocol becomes a component
that can be used in several scenarios (see Figure 2-10), promoting a certain
coherence in the RFCs. Thus, it is not necessary to design a new protocol
every time we study a new scenario. When functionality is needed and no
protocol provides it, a new protocol is in the offing; however, it needn’t be a

Chapter 242

IETF protocols Problem to resolve

Figure 2-9
The IETF protocols
are like a toolkit.

new solution. The ideal new protocol will address a general problem that
will or can arise in other applications in the future.

For instance, Web servers have to authenticate the identity of users
requesting access to a certain Web page. The IETF will automatically gen-
erate designs for a general authentication protocol usable by many kinds of
servers, instead of coming up with the most direct solution for processing
Web-server requests. In this way, they avoid duplication of protocol func-
tionality as much as possible and add elegance to Internet engineering. The
IETF designs protocols in a modular fashion.

43Packet Switching, IP, and the IETF

IETF protocols Problem to resolve

IETF protocols

The is used for resolving both problems.

Problem to resolve

Figure 2-10
The same IETF
protocol can be
reused to resolve
different problems.

IETF Protocol Features Simplicity is a key factor in protocol design.
Simple solutions are always preferable to more complicated ones. Some-
times performance gains or increases in the functionality of a protocol come
with a cost—more complexity. In certain situations, introducing a new level
of complexity is unavoidable, but when a choice is available, the simpler
solution is the rule.

Because all of the protocols coming from the IETF are used in the Inter-
net, they must also meet stringent requirements for scalability. No matter
what the scenario that originally provoked a new protocol might look like,
the resulting protocol should be usable in large networks with several mil-
lions nodes.

Robustness is another feature every protocol should exhibit. The IETF
approach to protocol robustness is well captured in one sentence: be strict
when sending and tolerant when receiving. An implementation should
always strive to follow correct protocol syntax and send well-formed mes-
sages. However, messages received by one implementation from another
should not be scrutinized for grammatical errors or syntax problems. The
guideline is that any message that can be understood should be processed,
and adherence to that guideline enables correct implementations to inter-
work properly with faulty ones.

For instance, suppose a protocol specification states that a certain mes-
sage containing a timestamp has to be sent every 500 ms. A merely correct
implementation would send the message every 500 ms, but a good imple-
mentation would work just as well if it receives messages every 400 ms
instead. Obviously, this guideline is not endlessly flexible; it’s meant to be
applicable as long as the faulty input doesn’t affect the correct operation of
the system.

Figure 2-11 is a familiar illustration of how someone adopting this guide-
line approach manages to communicate with someone who does not follow
strict English grammar rules.

In order to make sense of all these design rules, we need to consider
briefly how the process of new protocol design in the Internet has evolved
into the procedures used by today’s IETF. The following contains a brief his-
tory of the Internet for this purpose.

Chapter 244

History of the Internet Protocol
Development Process
The Internet’s precursor, the ARPANET, grew out of some research efforts
on packet-switching technology that began at the end of 1964 with just four
interconnected computers.

From the beginning of the 1970s, the ARPANET used Network Control
Protocol (NCP) for host-to-host transport. The first work on IP began dur-
ing the same period, and although IP soon became the dominant network-
layer protocol in the ARPANET, it wasn’t until January 1983 when
migration from NCP to IP finally ended. Today, the Internet is the largest
IP network in the world.

Origins of the Request For Comments (RFCs)

ARPANET was developed within the research and academic community,
with its strong tradition of sharing results and ideas. The research

45Packet Switching, IP, and the IETF

Bob receives a faulty (although
still understandable) input,
but he answers properly.

O brother, where
art thou?

I am right here.

Figure 2-11
Be strict when
sending and tolerant
when receiving.

community is an open environment that creates quick development. The
pace at which the ARPANET evolved proved to be extremely quick. The
community quickly determined that the model of academic publications,
which often takes more than a year in review and production, was too
stodgy to support Internet-style growth and innovation.

In order to avoid this bottleneck, new documents called Request For
Comments (RFCs) were created in 1969 by the community. In much the
same way operators issue Request For Information (RFIs) and Request For
Products (RFPs) to get feedback from vendors, individuals within the Inter-
net community issued RFCs to get feedback and ideas from others involved
in similar work. This information could be distributed fast and accessed for
free.

The idea was to gather all the feedback on a specific RFC in one place
and to publicly identify open issues. After all the necessary discussions,
when consensus was reached, a technical specification could be developed
without encountering continual obstacles.

The first RFCs were written by researchers working at the same loca-
tion. Later, the appearance of e-mail enabled RFC authors to be much more
widely distributed. Mailing lists gained increasing importance in the stan-
dardization process and currently, it is common to find RFCs written by
people who have never met.

This story has a happy ending.The ARPANET grew unchecked.All of the
individuals within the community had open access to all of the protocol
specifications and other technical documents. Access to these documents
enabled the rapid implementation of new applications that could readily
interoperate with existing and emerging applications.

Coordination Bodies

By this point, the ARPANET’s pace of growth necessitated some kind of
coordination. In the late 1970s, some bodies were loosely formed for this
purpose: the International Cooperation Board (ICB), the Internet Research
Group (IRG), and the Internet Configuration Control Board (ICCB).

These bodies coped with the growth for some time, but were soon over-
whelmed. That’s when the task forces were first created; each task force
consisted of people working on a well-specified problem area, and each had
a chair to oversee progress.

The Internet Activities Board (IAB) was formed next; its membership
consisted of all the chairmen from the various task forces. One of these

Chapter 246

early task forces was the Internet Engineering Task Force (IETF). Fig-
ure 2-12 illustrates the original structure of the IAB.

In the mid 1980s, public interest in the engineering of the Internet grew
dramatically. More and more people started attending IETF meetings. In
response, the IETF was divided into working groups. Every working group
had one or more chairs and a predefined scope. These working groups were
grouped together forming areas—each area under the jurisdiction of an
area director or directors. Collectively, the area directors formed the Inter-
net Engineering Steering Group (IESG). The remaining task forces were
collapsed into the Internet Research Task Force (IRTF).

The Internet Society (ISOC) was created in 1991 to administer the stan-
dardization process itself rather than any specific technology. In 1992, the
IAB was rechristened the Internet Architecture Board, and we arrived at
the current configuration of Internet governance (see Figure 2-13).

47Packet Switching, IP, and the IETF

IESGIRTF

IAB

ISOC

IETF

Figure 2-13
Standardization
bodies.

[...]IETF

IAB

Different task forces under the IAB

Figure 2-12
Original structure of
the IAB.

The IETF
The Internet standard process [RFC 2026] has always been evolving. Today,
Internet standards are developed in the IETF—an open community of peo-
ple concerned with protecting the performance of the Internet and related
technologies.The IETF is divided into working groups (currently, more than
125 working groups) wherein the actual technical work is conducted.

IETF working groups are usually short lived; conversely, research groups
in the IRTF are usually long lived. A working group focuses on a technology
area that is defined when the group is created; it dissolves when the group
has answered the specific questions posed by its charter to the satisfaction
of the IESG (or when stalemated). Examples of working groups that we’ll
consult in this book are Multiparty Multimedia Session Control (MMUSIC),
IP Telephony (IPTEL), and Session Initiation Protocol (SIP).

Working groups fall within the following nine different areas in the
IETF. The IETF structure is illustrated in Figure 2-14.

� Applications

� General

� Internet

� Operations and management

� Routing

� Security

Chapter 248

Figure 2-14
IIETF structure.

� Transport

� User services

� Sub-IP

The IESG

The IESG, composed of area directors and the IETF chair, reviews the doc-
uments produced in working groups and approves them, where warranted,
as standards. In other words, the IESG is the technical management of the
IETF.

The IESG also charters new working groups. If an area director consid-
ers that the IETF has enough interest and willing bodies to work on the
issues proposed, a charter is written to specify working group deliverables
and the tasks it’s empowered to work on. A charter also includes the time
frame for the outcome of the working group.

Issues can be raised at the IETF outside of the working group structure.
When it’s unclear whether a new problem set is or isn’t a threat to the
Internet or whether it warrants a working group, interested parties can
hold a Birds Of Feathers (BOF) meeting. Area directors use BOFs to inves-
tigate the issues at hand and assess interest within the community.

The Technical Work

Each working group has one or more chairs to manage progress and pro-
cedures. Each working group also creates an official mailing list for public
discussion of issues associated with the working group. Access to the mail-
ing list is free and unrestricted, and archives are maintained as a matter
of record. By now, most of the work done in a working group is carried out
in the mailing list. Technical discussions about unresolved issues are
conducted, agreements on procedures are reached, and general ques-
tions about the technology being developed are posed. Working groups
make decisions based on rough consensus. When individuals or groups
of individuals differ on a certain matter, the dominant view prevails.
(How to measure dominance is an ongoing debate for the IETF.) The view-
point prevails that a decision is more important than a resolution of all
differences.

49Packet Switching, IP, and the IETF

IETF Specifications: RFCs and I-Ds

The IETF publishes its documents in the RFC series. However, not all of the
documents produced by IETF define standards. The RFC series has basi-
cally three types of specifications: Internet standards track specifications,
non-standards track specifications, and Best Current Practice (BCP) RFCs.
Figure 2-15 shows the three types of specifications in the RFC series. The
following sections examine each type.

Standards Track RFCs RFCs following the standards track evolve
through three maturity levels: proposed standard, draft standard, and stan-
dard. Specifications coming out of a working group are classified as pro-
posed standard when they are believed to be stable and well understood.
Before reaching this level, proposed standards must be reviewed carefully
by the community of interest. Although some implementation experience
is highly desirable, it is not formally necessary for a specification to reach
proposed standard status.

This is not so for draft standards. In order to achieve the next maturity
level, an RFC must point to at least two interoperable implementations in
the real world. These implementations must contain all of the features that
the specification describes so that unproductive features can be removed
from the spec. A time requirement is also in place to ensure adequate dis-
cussion and review. Before becoming a draft standard, an RFC must stay at
the proposed standard level for at least 6 months.

Chapter 250

RFCs

Standards track

Proposed
Standard

Draft
Standard

Standard

Non-standards track BCP

InformationalExperimental Historic

Figure 2-15
Types of RFCs.

A specification on the standards track must eventually meet two main
requirements: rough consensus and running code. These two requirements
are key aspects of the IETF process.

The last maturity level on the standards track is the Internet standard
(STD) level. A specification becomes a standard only when wide implemen-
tation and operational experience appears within the community. Internet
standards are stored in the STD subseries where new standards are
assigned an STD number.

Every IETF specification has an associated RFC number, and when a
certain specification enters the next maturity level on its track, it is imme-
diately assigned a new RFC number. For example, the proposed standard
“An Extension to HTTP: Digest Access Authentication” was originally RFC
2069. When it reached the draft standard level, it became RFC 2617 “HTTP
Authentication: Basic and Digest Access Authentication.”The RFC archives
document and preserve the full development cycle of each protocol in
this way.

When a specification reaches the Internet standard level and is included
in the STD subseries, it keeps an RFC number nonetheless. For instance,
the IP protocol is defined in RFC 791, but because the status of this proto-
col specification is Internet standard, it also appears in the STD subseries:
STD0005. A specification cannot reach the Internet standard level without
being a draft standard for at least 4 months, and at least one IETF meeting
has to be held before a draft RFC can become an Internet standard.

Non-standards Track and BCP RFCs As suggested earlier, some IETF
specifications do not define any standard at all. These specifications follow
the non-standards track. Experimental RFCs show results and conclusions
from research and development work. They record the experiences of imple-
menters and designers working on some area of the technology.

Informational RFCs are used to spread general information to the com-
munity. Neither experimental nor informational RFCs are reviewed as
carefully as standards track documents because they do not incorporate a
proposal. All RFCs become historic when they are obsoleted by a new RFC,
or when they are no longer applicable.

BCP RFCs standardize practices and give guidelines for policies and
operations. BCP RFCs do not have maturity levels; their process is similar
to the one for proposed standards. BCP RFCs are stored in the BCP sub-
series, but retain their RFC number. For instance, RFC 2026 “The Internet
Standards Process” is also BCP0009.

51Packet Switching, IP, and the IETF

Chapter 252

Internet Drafts (I-Ds) Internet drafts (as opposed to RFCs) are draft
documents used inside the working groups to provoke and gather feedback.
They are issued before a more definitive version of the specification reaches
RFC status. An Internet draft is valid for at least 6 months or until a newer
version of the draft appears. Internet drafts do not define standard docu-
ments, and the IETF discourages referencing them in any way but as work
in progress. Note that this books references some Internet drafts. The
reader should be aware of the limited and unofficial status of an Internet
draft.

Internet drafts are also employed in the standards track. When a pro-
posed standard RFC is issued, it’s accompanied by a new Internet draft. All
changes and additions required for the proposed standard RFC to reach the
draft standard level are executed on this new draft, which in final form
becomes the draft standard RFC. The basic specification of the SIP protocol
[RFC 2543] is currently a proposed standard, having reached this maturity
level in February 1999. Since then, an Internet draft displaying all the mod-
ifications made to the specification since March 1999 has been posted. This
Internet draft [draft-ietf-sip-rfc2543bis] will be the future SIP draft stan-
dard RFC.

Figure 2-16 shows the life cycle of an IETF specifiction—from the first
Internet draft until the specification is issued as an Internet standard. Sev-
eral Internet drafts with different version numbers are released until the
spec reaches a particular maturity level. At that point, the specification is
published as an RFC, and a new Internet draft is issued to gather feedback
in order to reach the next maturity level.

It is worthwhile mentioning that some specifications, after having
reached the proposed standard maturity level and having gathered feed-
back in a new Internet draft, are re-issued as a new proposed standard RFC
rather than as a draft standard RFC. This happens when the specification
has changed substantially from the last RFC that was issued so a new RFC
is needed but the new RFC cannot have draft standard status since the
specification is not mature enough.

Naming Internet Drafts As described previously, the charter of a working
group contains a limited set of deliverables that the working group agrees
to work on.With these deliverables in mind, the group defines a set of work-
ing group items. When the working group releases a draft about a particu-
lar item, it is named according to the following format: draft-ietf- followed
by the name of the working group followed by version number.

53Packet Switching, IP, and the IETF

RFCxxxx

RFCxxxx

draft–ietf–sip–rfcxxxxbis–xx.txt

draft–ietf–sip–rfcxxxxbis–xx.txt

draft–ietf–sip–title–xx.txt

draft–ietf–sip–title–01.txt

draft–ietf–sip–title–00.txt

draft–ietf–sip–rfcxxxxbis–00.txt

draft–ietf–sip–rfcxxxxbis–00.txt

[...]

Standard
(New RFC and STD numbers)

Draft standard
(New RFC number)

STDxxx=

[...]

[...]

RFCxxxx
Proposed standard
(New RFC number)

Figure 2-16
Life cycle of an
Internet standard.

Chapter 254

Naming conventions term the first release of an Internet draft version
00. Hence, draft-ietf-sip-call-flows-01.txt is the second version (version
number 1) of this specific Internet draft belonging to the SIP working
group.

Individual contributions to a working group discussion that are not
directly related to a working group item or that are preliminary versions of
a draft on a working group item follow a slightly different naming conven-
tion containing the author’s name: for example, draft-schulzrinne-sip-911-
01.txt.

Finally, Internet drafts and RFCs can be found in different formats (Post-
Script, Portable Document Format [PDF], txt), but the definitive reference
is always the ASCII text version. It includes all the figures, tables, illustra-
tions, and diagrams contained in the specification.

Figure 2-16 outlines the life cycle of an Internet standard. A new idea
(e.g., a new protocol) is first documented in draft-ietf-sip-title-00.txt. This
very first draft evolves thanks to the feedback given by the community until
it reaches the standard (STD) maturity level.

However, not all the drafts reach the end of the standardization process
shown in figure 2-16. Many drafts reach the proposed status, but just
a few proposed RFCs become a draft standard later. Among those that
become a draft standard, even fewer become Internet standards. It is
common for a proposed RFC to gather feedback and to be re-issued as
a proposed RFC again (with a new RFC number) rather than as a draft
standard.

In the following chapters we will study different protocols and extensions
to protocols specified by the IETF. It is important to keep Figure 2-16 in
mind in order to understand in which maturity stage a particular specifi-
cation is at present.

The Internet
Multimedia

Conferencing
Architecture

CHAPTER 33

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Now that we have stipulated how the Internet Engineering Task Force
(IETF) works and some general characteristics found in all the protocols
designed by the IETF community, Session Initiation Protocol (SIP) among
them, we can turn our attention to the context in which SIP is used. We will
first see which protocols are used below SIP in the transport layer and
which functionality they provide.

We’ll also discuss what motivated the Internet Engineering Steering
Group (IESG) to charter the SIP working group in the first place, in order
to understand where SIP is intended to work. We’ll focus on the Internet
multimedia conferencing architecture. This architecture includes a set of
Internet protocols that together provide multimedia services in the Internet
environment. SIP is part of this architecture, which proves to be one of SIP’s
strengths. As such, it interacts smoothly with the rest of the protocols and
exploits their functionality; that is, SIP is one tool inside the toolkit that
this architecture represents.

The Internet Layered Architecture
We have said that one of the most important strengths of the Internet is its
suitability to be used as a service creation platform. The IETF adheres to a
layered approach to create services. The Internet layered model consists of
four layers that are implemented on top of the physical layer (Figure 3-1),
which are commonly known as the Transmission Control Protocol/Internet
Protocol (TCP/IP) protocol suite.

A transport layer is implemented on top of the common IP layer and
application layer protocols make use of the different transport protocols. A
particular application aiming to provide a certain service picks up the appli-
cation layer protocols required to implement the service.

Let’s say we want to build a Web browser that enables users to surf the
Internet and to read e-mail. To do so, we will have to pick up two applica-
tion layer protocols. We choose Hypertext Transfer Protocol (HTTP) [RFC
2068] to surf the Internet and Internet Message Access Protocol (IMAP)
[RFC 2060] for downloading e-mail from a server. Both run on top of the
Transmission Control Protocol (TCP) [RFC 793], which is, of course, a trans-
port layer protocol (Figure 3-2).

Chapter 356

Transport Layer Protocols

Applications must make use of application layer protocols in order to pro-
vide any service whatsoever. Application layer protocols must in turn make
use of transport layer protocols, and transport layer protocols run on top of

57The Internet Multimedia Conferencing Architecture

Application layer

Transport layer

Network layer

Data—link layer

Physical layer

Figure 3-1
Four layers of the
TCP/IP protocol suite.

Combined Web browser and e-mail client

TCP

IP

HTTP IMAP Application layer

Tailored services
for the users

Transport layer

Network layer

Figure 3-2
Building services
on top of a layered
architecture.

IP. Currently, two transport layer protocols are widely available: TCP [RFC
793] and User Datagram Protocol (UDP) [RFC 768].

Transmission Control Protocol (TCP) TCP provides reliable,
in-sequence transport of byte-streams between hosts. It contains mecha-
nisms such as time-outs, retransmissions, and sequence numbers that let
the protocol deliver data to the receiver exactly as generated by the sender.
TCP also performs flow control and error correction.

Thus, if Bob sends Laura the message “Laura, how are you doing?”
over a TCP connection, TCP will ensure that Laura receives the message
“Laura, how are you doing?” Because TCP is an end-to-end protocol, it
deduces the state of the network by observing the dynamic behavior of the
end-to-end traffic. Receivers send acknowledgement messages to senders to
provide enough information so that error detection and flow control can be
performed.

TCP enables the end user to demultiplex incoming IP packets to differ-
ent applications. Because all of the packets arriving at a host contain the
same destination IP address, a further identifier is needed to associate each
arriving packet to the proper application. These identifiers are referred to
as TCP port numbers, and each IP-based application uses one. For instance,
datagrams with the destination TCP port number 80 are delivered to the
HTTP application, whereas datagrams sent to the TCP port number 23 are
handled by the Telnet [RFC 854] application (Figure 3-3).

User Datagram Protocol (UDP) UDP [RFC 768] provides unreliable
datagram delivery; that is, it does not ensure that a given datagram will
arrive at its destination by any means. UDP merely performs IP traffic
demultiplexing based on UDP port numbers. Both UDP and TCP are
16-bit port numbers.After traffic demultiplexing, UDP provides a checksum
that allows end systems to check that the datagrams received were not
corrupted by the network.

For instance, if Bob sends the same message as before using UDP, he
cannot be sure Laura will receive it. To find out, he’ll have to check with
Laura herself. If a datagram containing a UDP packet gets lost, Bob will
also have to retransmit it himself; UDP does not provide such functionality.

Stream Control Transmssion Protocol (SCTP) The Stream Control
Transmission Protocol (SCTP) [RFC 2960] is a newly developed transport
protocol. It is foreseen that SCTP will be widely implemented, but currently,
it is less available than TCP and UDP.

Chapter 358

Real-Time Services in the Internet

User services are implemented using application layer protocols. Two of the
most familiar Internet services are the Web and e-mail. The Web uses the
application layer protocol HTTP and e-mail is implemented using, among
other protocols, Simple Mail Transport Protocol (SMTP) [RFC 821] and
Internet Message Access Protocol (IMAP) [RFC 2060].

These services, and others like them, have boosted the Internet develop-
ment for several years. They consist of an asynchronous exchange of infor-
mation. The Internet has been proved to be a powerful tool in developing
such asynchronous services, but it can also provide synchronous (real-time)
services. Examples include videoconferencing over the Net and live broad-
cast on a workstation attached to an IP network. Real-time services are
delay sensitive. The information they carry needs to be delivered to its des-
tination within a prescribed time limit. If the delay introduced by the net-
work is any longer, either the information becomes no longer useful to the
receiver or the service quality drops dramatically.

It is possible to further classify real-time services into streaming and
interactive categories (see Figure 3-4). Streaming services typically have

59The Internet Multimedia Conferencing Architecture

TCP UDP

IP packets

IP interface

HTTP application
port 80

Telnet application
port 23

VolP application
port 20000

Application layer

Transport layer

Network layer

Figure 3-3
Delivery of IP
packets to the
proper application.

Chapter 360

Real time streaming service

Real time interactive service

The Internet

The Internet

Figure 3-4
Interactive and
streaming real-time
services

lower requirements than interactive ones. Consider the transmission of a
soccer match as an example of a streaming service. Relatively large delays,
in the order of even some seconds, are acceptable for the user as long as the
image and sound quality hold up, but probably not vice versa. The industry
currently deems it acceptable for users to see a goal on the screen a couple
of seconds after it really happened on the soccer field where the match
takes place.

61The Internet Multimedia Conferencing Architecture

Integrated and Differentiated Services Forwarding

IP and IP multicast

UDPTCPUDP

SAP SIP HTTP SMTP RTSP
RSVP

Distributed
control

RTP and
RTCP

Reliable
multicast

Conference Setup
and Discovery Conference Course Control

Conference management Media Agents

Audio
and

Video
Shared

Applications

UDP

Figure 3-5
Internet multimedia
conferencing
architecture.

Services with an interactive flavor have tougher requirements. In a voice
conversation over the Internet, the delay must be kept very low. Otherwise
it is impossible to undertake a normal conversation. The maximum accept-
able delay for this kind of real-time interactive service depends on many
factors, but in general, it is lower than the delay for streaming services.
According to the International Telecommunication Union Telecommunica-
tion Standardization Sector (ITU-T), the maximum acceptable delay for
voice conversations is a round-trip delay of 300 ms.

The Internet Multimedia Conferencing Architecture Advanced
real-time services include several types of media (for example, videocon-
ferencing includes video streams and audio streams) and are therefore
referred to collectively as multimedia services. The IETF has developed a
set of protocols specific to multimedia services. Applications will have to
combine some of these protocols in order to attain the required functional-
ity. Figure 3-5, taken from [draft-ietf-mmusic-confarch], shows how all these
protocols fit together. SIP is part of the Internet multimedia conferencing
architecture and is shown in real context in Figure 3-5. If you take the time
to understand the role of each protocol in the architecture, you’ll have a
good functional explanation of why SIP was needed and what it is expected
to deliver.

Multicast
The Internet is designed for best-effort delivery of datagrams between
hosts. A datagram contains a destination IP address and the routers in the
network undertake the task of moving the datagram towards its destina-
tion. An IP address typically identifies a network interface in a host (such
as an Ethernet card). This mechanism enables two-party data exchange
between any two hosts in the network, so long as one host acts as sender
and the other as receiver. It is also possible for the receiver to return data
to the sender just by noting the sender’s IP address. The kind of routing
where one IP address identifies a single-host interface (Figure 3-6) is
referred to as unicast.

Routing Towards Many Receivers

This simple scenario gets complicated when more than two parties
wish to communicate. In order to send an IP packet to all of the hosts

Chapter 362

Data

Destination IP address:
138.85.27.10

Data

131.160.1.112

138.85.27.10

Data

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-6
Unicast routing.

involved in a n-party conference, a host would have to transmit n-1 IP pack-
ets, each containing the IP address of one of the hosts designated to receive
the data.

Obviously, systems with these mathematics don’t scale well for a large
number of users. As soon as the number of hosts involved increases at all,
traffic in the network increases dramatically, straining the processing
power of the hosts. Every host needs to register the IP addresses of all
receivers and build n-1 IP packets with exactly the same information— the
only difference being the destination address. Many of these packets tra-
verse a common set of nodes until they finally are routed to their destina-
tions, requiring links in the network to transport the same information
multiple times (Figure 3-7).

In Figure 3-7, packets from 131.160.112 to 138.85.27.10 and packets
from 131.160.1.112 to 153.88.251.19 follow the same path to arrive at the
router R. Therefore, all the links from 131.160.112 to R are loaded twice as
much as they ought to be.

63The Internet Multimedia Conferencing Architecture

Data

Destination IP address:
153.88.251.19

Data

131.160.1.112

138.85.27.10

153.88.251.19

R

Data

Destination IP address:
138.85.27.10

Data

Data

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-7
Sending the same
data to different hosts
using unicast.

Multicast routing resolves these issues by providing many-to-many com-
munication scaling to groups with a large number of participants. These
routers collaborate to forward IP packets destined for a multicast address
towards their several destinations. A multicast address represents a group
of hosts willing to receive the IP packets that will be transmitted, and by
the same token, hosts receiving data from a multicast address are members
of a particular multicast group. Any host in the network can send data to a
multicast address, but it must belong to the multicast group in order to
receive data. (In IP version 4 [RFC 791], addresses between 224.0.0.0 and
239.255.255.255 are reserved for multicast.)

Advantages of Multicast

Multicast is scalable because data traverses each link only once (Fig-
ure 3-8). Multicast routers will duplicate IP packets only if necessary and
even then will duplicate as close to the members of the multicast group as
possible.

Figure 3-8 shows the same configuration as Figure 3-7. Packets from
131.160.1.112 to 138.85.27.10 and from 131.160.1.112 to 153.88.251.19 are
also sent, but, this time, via multicast routing. Links from 131.160.1.112 to
R carry the same data just once. R will duplicate the data in order to send
it to 138.85.27.10 and 153.88.251.19. This example illustrates two main
savings:

� Half of the bandwidth used from 131.160.1.112 to R is saved.

� The end systems do not need to know who the members of the
multicast group are in order to send data.

Senders send data to the multicast address without knowing the identity
of all the receivers. Only the routers closest to the receivers know which
hosts are members of the multicast group. No central server is keeping
track of multicast groups; all the information is distributed among multi-
cast routers.

The most a multicast router needs to know is whether at least one mem-
ber of the multicast group can be reached using one of the router’s inter-
faces. If the answer to that question is yes, the data will be transmitted
through this interface.

Chapter 364

Multicast Routing Protocols

Multicast routers use multicast routing protocols to build distribution trees
from senders to receivers. These protocols can be grouped into two cate-
gories, sparse mode and dense mode. These two modes use different algo-
rithms to build trees.

Dense Mode Multicast Routing Protocols Dense mode multicast
routing protocols work well in networks where most of the hosts are mem-
bers of the multicast group. When the proportion of hosts receiving multi-
cast data is high, the probability of having at least one member of the
multicast group in any particular subnetwork is also high.

65The Internet Multimedia Conferencing Architecture

Data

131.160.1.112

138.85.27.10

153.88.251.19

R

Data

Destination IP address:
224.2.17.12

Data

Data

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-8
Multicast routing.

Chapter 366

Dense mode protocols usually build a shortest-path tree per sender or
group of senders. Thus, a different distribution tree is used depending on
where the data comes from, which is why they’re usually referred to as
source-based trees. Figures 3-9, 3-10, and 3-11 show how three different dis-
tribution trees are calculated for three different senders.

Some common examples of dense mode protocols are Distance Vector
Multicast Routing (DVMRP) [RFC 1075] and Protocol Independent Multi-
cast-Dense Mode (PIM-DM). DVMRP is currently enjoying the most wide-
spread use.

Sparse Mode Multicast Routing Protocols Sparse mode protocols are
better suited for networks where the proportion of hosts receiving multi-
cast traffic is low. These protocols usually implement a rendezvous point
and, based on it, build a shared tree that will be used by all sources.

Figure 3-12 shows how a distribution tree for the rendezvous point is
built. The tree is computed as if the rendezvous point were the sender and
all the other group members were the receivers. While this tree is being
computed, packets from the group’s senders are encapsulated and routed
towards the rendezvous point, which then delivers them to receivers by con-
sulting the tree.

131.160.1.112

138.85.27.10

153.88.251.19

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-9
Distribution tree for
131.160.1.112.

Once a tree for the rendezvous point is complete, all nodes use it. This
means that packets are no longer encapsulated for transmission to the ren-
dezvous point, but are routed towards receivers directly through the tree.
We can see in Figure 3-13 that the shared distribution tree used by nodes

67The Internet Multimedia Conferencing Architecture

131.160.1.112

138.85.27.10

153.88.251.19

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-10
Distribution tree for
138.85.27.10.

131.160.1.112

138.85.27.10

153.88.251.19

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-11
Distribution tree for
153.88.251.19.

with IP addresses 138.85.27.10 and 153.88.251.19 differs from the one cal-
culated for them specifically in Figure 3-13.

Examples of sparse mode protocols are Protocol Independent Multicast-
Sparse Mode (PIM-SM) [RFC 2362] and Core-Based Trees (CBTs) [RFC
2189].

IGMP

Apart from the protocol used to build the distribution tree, a host wishing
to receive multicast data needs to become a member of a particular multi-
cast group —a set of hosts that subscribe to the same multicast address.
Internet Group Management Protocol (IGMP) [RFC 2236] [draft-ietf-idmr-
igmp-v3] is used for this purpose (see Figure 3-14). Hosts send requests for
joining or leaving a particular group. With this membership information in
hand, a multicast router handling a certain subnetwork knows whether it
needs to receive multicast data or not. If its subnetwork has no members, it
does not need to receive datagrams addressed to the multicast address of
the group and can accordingly remove itself from the distribution tree using
a multicast routing protocol. Later, if a host in its subnetwork wishes to
become a member of the multicast group, that router will be added to the
distribution tree again.

Chapter 368

131.160.1.112

138.85.27.10

153.88.251.19

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-12
Distribution tree
for the rendezvous
point.

69The Internet Multimedia Conferencing Architecture

131.160.1.112

138.85.27.10

153.8.251.19

IGMP

IGMP

IGMP

Multicast
Routing Protocols

Figure 3-14
Use of IGMP.

131.160.1.112

138.85.27.10

Rendezvous point

153.88.251.19

ROUTER

ROUTERROUTER ROUTER

ROUTER

ROUTER

ROUTER

Figure 3-13
Shared tree for
all the nodes.

The Mbone

The portion of the Internet that supports multicast is called the Mbone. The
Mbone is not a separate network from the Internet. Mbone routers are also
part of the Internet and are enabled for both unicast and multicast traffic.
When an island of multicast routers that are not directly connected to the
Mbone forms, IP tunnels are implemented between them and the rest of the
Mbone. We will see that SIP was first designed for use in the Mbone to
invite users to multicast sessions.

IETF sponsors ongoing work on interdomain multicast routing protocols
such as Border Gateway Multicast Protocol (BGMP) [draft-ietf-bgmp-spec],
anticipating that they will provide a more scalable multicast routing infra-
structure that introduces hierarchy. Traffic aggregation between domains
will reduce the state information kept by multicast routers.

Transport of Real-Time Data: RTP
The system requirements of different types of traffic are often very differ-
ent. This disparity necessitates the implementation of different protocols to
transport data with different requirements. For data types that need reli-
able transport across the network — an e-mail, for example — the sender
wants the recipient to read exactly what he or she wrote, but is not equally
invested in preventing delivery delay. For most e-mail, the difference
between 10 seconds and 1 minute is not significant. A delayed correct
packet is acceptable in this situation, whereas an on-time incorrect packet
would not be.

As previously noted, the requirements for real-time traffic look quite dif-
ferent. Let’s say that two parties embark on a voice conversation through
the Internet. The encoded audio will have to be transmitted in IP data-
grams to be played back to the recipient. Using common sense, a delayed
correct packet in this scenario is worse than unacceptable; it’s literally use-
less. If an out-of-sequence datagram containing what the other party said
five seconds ago arrives, it will be discarded.

Chapter 370

Jitter and Sequencing of Datagrams

Beyond these general real-time requirements are some lesser issues that a
protocol designed for real-time traffic must address: jitter and sequencing of
datagrams. IP networks introduce some delay to every packet traversing
them. The amount of delay depends on many factors, one being the state of
every particular router at the moment of packet reception. If a router has a
heavy load, the packet will wait in a queue; if the queues empty, the packet
will be routed immediately.

Because router state is never the same for every packet belonging to the
same flow, we have a term for the variation in delay: jitter. If the jitter is
high enough, a packet launched later than another can arrive before it, cre-
ating the out-of-sequence circumstance anathema to real-time transmis-
sions (Figure 3-15).

To reduce jitter, the community widely employs the Real-time Transport
Protocol (RTP) [RFC 1889]. RTP counteracts the effects of jitter and the
consequent arrival of out-of-sequence datagrams by assigning timestamps
and sequence numbers to the packet header.A sequence number in the RTP
header enables the receiver to order the RTP packets received. Once
ordered, the original timing relationship of the data contained in the pay-
load (such as audio or video) can be recovered by reading timestamps (Fig-
ure 3-16). In the case of encoded audio, timestamps inform the receiver
when to play the payload of the RTP packet through the speaker. A field
called payload type describes which kind of data is transported in the RTP
packet (such as audio encoded using a PCM codec).

Besides bearing information about payload, RTP headers also contain
identifiers for the source originating the payload. Let’s revisit the example
of voice conversation and unpack all the operations involved. The sender
produces RTP packets with encoded audio as the payload. The receiver
implements a buffer to store incoming RTP packets. They are ordered
according to sequence number. An RTP packet is removed from the buffer
when its timestamp indicates that it is time to play back its payload.

If the timestamp of an incoming RTP packet indicates that its payload
should have already been already played, the packet is discarded. There-
fore, buffers should be long enough so that packets have time to arrive

71The Internet Multimedia Conferencing Architecture

before they have to be played. Additionally, buffers should be short enough
so that the inevitable delay doesn’t make normal conversation impossible.

What if the packet has not arrived by the time it should be played?
Some other sound is played instead. Interpolation techniques are available
to create a smooth sound transition that is able to hide these gaps from the
recipient.

Chapter 372

Hello

llo

He llo

llo ... he

time0 1 2

time0 1 2 3 4

The Internet

he

Figure 3-15
Effect of jitter in
voice transmissions.

Real-Time Transport Control Protocol

The previous example had just one media stream: an audio stream. Time-
stamps can also be used to recover the original timing relationship of the
data in multiple media streams; they perform this task for each media
stream individually. For instance, in a videoconference, the timestamps of
the video stream ensure that the video is not played faster or slower than

73The Internet Multimedia Conferencing Architecture

Hello

He llo
Packet no: 1
Timestamp: 0

Packet no: 2
Timestamp: 1

Hello

time0 1 2

Hello
Packet no: 2
Timestamp: 1

Packet no: 1
Timestamp: 0

time0 1 2

The Internet

Figure 3-16
RTP couteracts the
effects of jitter and
the arrival of out-of-
sequence packets.

the original, while the audio timestamps do precisely the same with the
audio stream. However, a mechanism is needed to synchronize streams, and
that’s where the Real-time Transport Control Protocol (RTCP) [RFC 1889]
comes in. Its function is to associate timestamps and a real-time clock.

Every RTP session has a parallel RTCP session. Besides media synchro-
nization, RTCP provides information about the members of the session and
the quality of the communication. RTCP reports how many packets the net-
work dropped during the session so the sender knows what quality of recep-
tion the receiver is experiencing.

QoS Provisioning: Integrated
Services and Differentiated
Services
The Internet’s best-effort service model works fine for most applications
when the network is under a reasonable load. However, when an IP net-
work experiences heavier loads, best-effort service may not be adequate for
end-to-end traffic. As delays increase, the network becomes lossier. IP pack-
ets bombard the routers faster than they can cope with them, forcing a
queue to develop. When queue size limits are exceeded, the router responds
by dropping datagrams.

For TCP traffic, dropped datagrams mean more retransmissions, leading
to lower performance and poor Quality of Service (QoS). The user begins to
observe end-to-end delay even with relatively forgiving applications such as
file transfer.

If the dropped datagrams belong to real-time traffic, the receiver will
never be received and the datagrams will not be retransmitted. As a result,
the quality suffers. In the case of voice transmissions, audio can quickly
become unintelligible on the receiver’s end.

For applications needing a better-than-best-effort service, two different
approaches fit the bill: integrated services [RFC 1633] and differentiated
services (DiffServ) [RFC 2475].

Integrated Services

The basic idea behind the integrated services architecture is to give differ-
ent treatment in the routers to packets belonging to different flows. For

Chapter 374

instance, datagrams from a real-time flow can be tapped for forwarding
ahead of datagrams from a low-priority flow. Routers handling a particular
flow will need additional information in order to forward its datagrams
properly: namely information on how to distinguish the datagrams in one
flow from datagrams belonging to other flows and what class of treatment
each datagram is due.

A router might prioritize all datagrams with a certain destination IP
address and a certain UDP destination port number, while continuing best
efforts for datagrams with a different destination. In the latter case, a
router handles several flows and therefore has to implement different
packet filters in order to classify the datagrams it receives. The default is
best effort, which is what packets that do not belong to any flow known by
the router receive.

Services Available The integrated services architecture currently pro-
vides two services: controlled-load and guaranteed services. They represent
two levels of better-than-best-effort services (Figure 3-17).

Packets benefiting from controlled-load services are given priority over
best-effort traffic. Therefore, even if the network is congested with best-
effort traffic, the controlled-load service delivers the datagrams as if the
network were under moderate load. This service does not guarantee any
particular bandwidth or delay for a certain flow; it simply ensures that
packets get superior treatment.

Guaranteed service, as the name suggest, provides a certain bandwidth
and a delay bound for a particular flow. Therefore, the jitter observed for
guaranteed traffic is small to negligible.

75The Internet Multimedia Conferencing Architecture

Incoming interface

Best-effort service

Cotnrolled–Load service
IP packet IP packet Packet

filter

Outgoing interface

IP packet IP packetIP packet IP packet

Guaranteed service

Router

IP packet IP packet

IP packet IP packet

Figure 3-17
Packet filter in
a router.

Chapter 376

Because a router cannot grant high-priority treatment to an unlimited
amount of traffic, routers need the capability for admission control and
resource reservation.

Upon receiving a request for handling a new flow, a router checks
whether it has enough available resources to accept it without impacting
other flows in progress. If the QoS requested for the flow can be granted, it
reserves resources for the newcomer.

State Information Stored in the Network We’ve just seen that
routers must store information about flows in order to differentiate data-
grams properly.This implies that the network stores state information. Pre-
viously, we argued that doing so flies in the face of the IP paradigm, pushing
the intelligence to the end systems and storing as little state as possible in
the network. The trade-off for less information is more robust systems that
tolerate network failures better. Acknowledging the value of the paradigm
and the need to make exceptions to it on well-defined occasions, reserva-
tion merging and soft states help minimize the problems that exceptions
can cause.

Reservation Merging Figures 3-18, 3-19, and 3-20 show how reservation
merging is performed in a multicast group. We saw in Figure 3-13 how the
shared distribution tree was calculated for that topology. In Figure 3-18, we
now assume that 131.160.1.112 is the sender and the other hosts,
153.88.251.19 and 138.85.27.10, are the receivers.

Receiver 138.85.27.10 requests a certain QoS for its incoming flow. The
routers in the path store the necessary state in their packet filters and the
QoS requested is honored (Figure 3-19).

Now receiver 153.88.251.19 also requests QoS for the flow it is receiving.
However, the second host won’t need to request QoS for the entire path from
the sender because a QoS reservation is already present in part of the path
for the same flow. Therefore, when 153.88.251.19 requests QoS, state infor-
mation stored in the routers in the path that was already provisioning
QoS for the first host does not increase. New state information is limited to
those routers in the path from 153.88.251.19 to the main distribution tree
(Figure 3-20).

77The Internet Multimedia Conferencing Architecture

131.160.1.112

138.85.27.10
QoS requested by 138.85.27.10

Best-effort service

153.88.251.19

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-19
138.85.27.10
requests QoS for
the flow.

131.160.1.112

138.85.27.10

153.88.251.19

ROUTER

ROUTERROUTER ROUTER

ROUTER ROUTER

ROUTER

Figure 3-18
Distribution tree with
131.160.1.112
acting as a sender.

Soft States Implementing soft states increases the system robustness. Soft
states store state information temporarily, after which the router removes
all the state it was storing. Under this system, if the state information is
not refreshed periodically, it will expire and enable the release of all the
resources reserved in the router. Soft states are typically refreshed by send-
ing a message to the router with the proper information, whereas hard
states are stored permanently and require a release-of-state command to
relinquish resources.

ReSerVation Protocol (RSVP) ReSerVation Protocol (RSVP) [RFC
2205] is the protocol used for resource reservation in the network. RSVP
installs the necessary state in the routers and refreshes it periodically.
Reservations for a particular flow are initiated by its receiver; the messages
that store state from the receiver to the sender are called RESV messages.

However, IP datagrams from the receiver to the sender do not typically
follow the same path as datagrams in the opposite direction.Thus, an RSVP
message (PATH message) from the sender to the receiver of the flow has to

Chapter 378

131.160.1.112

138.85.27.10QoS requested by 138.85.27.10

QoS requested by 153.88.251.19

153.88.251.19

ROUTER

ROUTERROUTER ROUTER

ROUTER

ROUTER

ROUTER

Figure 3-20
153.88.251.19 also
requests QoS.

be sent prior to resource reservation in order to scout out which path the
datagrams belonging to the flow will follow. PATH messages contain the
path that RESV messages must traverse backwards towards the sender
installing state in the router. Figure 3-21 shows an RSVP message flow.

The use of soft states also prevents the network from retaining unneces-
sary state information when routes change. If the route towards the flow
destination changes as a consequence of the routing protocol operation, all
of the datagrams will take a new route. Periodic PATH messages will also
take the new route. Routers in the old route will not receive any more PATH
messages, and therefore no RESV message will be received either. At that
point, the state stored in those routers will time out and be deleted.

Differentiated Services (DiffServ)

We have seen that RSVP and the integrated services architecture provide
different treatment for different flows in the routers. Routers filter packets
based on the information received in RSVP messages. For instance, as long
as flows are defined by the destination address and destination port num-
ber of the packets, routers have to examine the destination address and

79The Internet Multimedia Conferencing Architecture

Sender Router1 Router2 Receiver

Packets of the flow

(1) PATH:
 Sender

Packets of the flow

Packets of the flow
Packets of the flow

Packets of the flowPackets of the flow

The information received
in the PATH message is
used to route the RESV
message towards the
sender

(2) PATH:
 Sender

 Router 1

(5) RESV:
 Router 1

 Sender
(1) RESV:

 Sender

(3) PATH:
 Sender

 Router 1
 Router 2

(4) RESV:
 Router 2
 Router 1

 Sender

Figure 3-21
RSVP message flow.

port number of every datagram and map it to state information. The differ-
entiated services (DiffServ) architecture [RFC 2475] simplifies the task by
defining several traffic classes with different priority levels. Packets are
tagged at the edge of the network with the required priority level. Routers
in the network take their cue from these tags; each tag is associated with a
particular way of handling packets (referred to as Per-Hop Behavior [PHB]),
and the router only has to read the tag and look up its PHB. Examples of
standard PHBs include expedited forwarding [RFC 2598] and assured for-
warding [RFC 2597]. The former imitates the behavior of a circuit-switched
network and the latter provides drop precedence.

DiffServ scales better than integrated services because it releases
routers from the requirement to maintain per-flow state. Even with Diff-
Serv, however, networks still need admission control mechanisms. Other-
wise nothing would prevent end systems from tagging all traffic as high
priority and swamping the network. RSVP can be used for admission con-
trol, so expect to see RSVP and DiffServ used together for maximum scala-
bility, as shown in Figure 3-22.

Chapter 380

RSVP

RSVP

RSVP

Differentiated
services

Figure 3-22
DiffServ and RSVP
working together.

Session Announcement Protocol
(SAP)
When I decide to watch TV, I usually check the program guide to see which
channels are broadcasting something of interest. Once I’ve made a selec-
tion, I turn on the TV and turn to the correct channel. The program guide
contains information about the contents of available programs, the channel
they are on and the broadcast schedule.

The Internet utilizes a similar procedure. I need to select the most
interesting multicast session from among all those available. I also need to
know how to configure multimedia tools to receive the session chosen. It is
important to know, for instance, whether a session consists of just audio or
contains video as well.

The Session Announcement Protocol (SAP) [RFC 2974] comes into play to
distribute information about multicast sessions among potential receivers.
SAP undertakes the task of multicasting session descriptions on a well-
known multicast address and port (Figure 3-23). Because multicast tech-
nology does not provide reliability, SAP announcements are unreliable and
must be retransmitted periodically.

SAP announcements use a fixed amount of bandwidth, so a SAP host can
afford to listen to all the announcements sent by other hosts on the same
address and port. Depending on the number of announcements, the host

81The Internet Multimedia Conferencing Architecture

Evening news
Today, 8 pm to 9 pm

224.2.17.12

Session description
elaborated by the sender

SAP distributes
the session description

Figure 3-23
SAP distributes
session descriptions
among potential
users.

chooses a retransmission rate for the announcement of its session. Hence,
the more sessions that are present, the longer the interval becomes between
retransmissions.

Finally, SAP announcements can be encrypted and can make use of
authentication mechanisms. Encryption and authentication provide the
requisite level of privacy and check the identity of the creator of a particu-
lar session.

Session Descriptions

Although SAP multicasts session descriptions to potential receivers, it does
not define the format of those descriptions. Following the IETF way, various
protocols besides SAP can be used to describe sessions. (For recommended
format, consult the Session Description Protocol (SDP) [RFC 2327].) SAP
announcements carry all description formats, but have no way to negotiate
the protocol used for describing sessions. Therefore, when a system fails to
understand an SAP announcement for some reason, it has no recourse. It
cannot ask to receive the same announcement with a different Session
Description Protocol inside. Instead, SDP serves as the common protocol for
session description, and all applications must support SDP.

Session Description Protocol (SDP)
Session Description Protocol (SDP) [RFC 2327] specifies how the informa-
tion necessary to describe a session should be encoded. SDP does not
include any transport mechanism or any kind of parameter negotiation. An
SDP description is simply a chunk of information that a system can use to
join a multimedia session. It includes, for instance, IP addresses, port num-
bers, and times and dates when the session is active.

Turning again to the program guide analogy, a session description in TV
context would look like the following: “Tune in channel 5 at nine o’clock this
evening to see a soccer match,” or “Turn on channel 2 at nine o’clock every
evening to watch the news.” Just as a session description in the TV context
should contain information about how to receive the broadcast session

Chapter 382

(channel 5), when the session is broadcast (from nine o’clock to approxi-
mately eleven o’clock), and information about the contents of the session
(soccer).

We can get information about our favorite TV programs in many ways.
We can read about a program in the newspaper or in the TV guide. We can
consult the teletext or we can even receive a telephone call from a friend
telling us about a program. However, no matter how we find out about our
favorite program, we always need the same information: which channel,
when, and what program.

The information needed in the Internet context to receive a multimedia
session is slightly different, but the concept is the same. SDP can be used to
describe sessions no matter how session descriptions are distributed. They
can be distributed using SAP, or they can be sent inside an e-mail. They can
also be found on a Web page and retrieved using a normal Internet browser.
We will shortly discover that SIP also carries session descriptions in its
messages.

SDP Syntax

It is worthwhile to spend some time studying what SDP session descrip-
tions look like because they appear in many SIP messages. SDP session
descriptions are text-based, as opposed to a binary encoding such as ASN.1.
An SDP session description consists of a set of lines of text of the form:

Type = value

The type field is always one character long and the format of the value
field depends on which type it applies.An SDP description contains session-
level information and media-level information. The session-level informa-
tion applies to the whole session. It can be, for instance, the originator of the
session or the session name. The media-level information applies to a par-
ticular media stream. It can be, for instance, the codec used for encoding the
audio stream or the port number where the video stream is headed.

An SDP session description begins with the session-level information
and the media-level information, if any is present, comes after. The session-
level section always starts off with v�0, where v is the type and 0 is the
value. This line indicates that the protocol version is zero (SDP version 0).

83The Internet Multimedia Conferencing Architecture

Ensuing lines, up until the first media-level section or the end of the session
description as the case may be, provide information about the whole ses-
sion.

Media-level sections begin with an m line. The lines below it, until the
next m line occurs or until the end of the session description, provide infor-
mation about that particular media stream. The following is an example of
an SDP session description:

v=0

o=Bob 2890844526 2890842807 IN IP4 131.160.1.112

s=SIP seminar

i=A Seminar on the Session Initiation Protocol

u=http://www.cs.columbia.edu/sip

e=bob@university.edu

c=IN IP4 224.2.17.12/127

t=2873397496 2873404696

a=recvonly

m=audio 49170 RTP/AVP 0

a=rtpmap:0 PCMU/8000

m=video 51372 RTP/AVP 31

a=rtpmap:31 H261/90000

m=video 53000 RTP/AVP 32

a=rtpmap:32 MPV/90000

In this example, the session-level section consists of the first nine lines,
from v�0 to a�recvonly, and has three media-level sections: one audio
stream and two video streams.The o line indicates the creator of the session
(in this case, Bob) and the IP address of his site. The s line contains the
name of the session and the i line contains general information about the
session. The u line provides a Uniform Resource Locator (URL) where more
information about the topic of the session can be retrieved. The e line con-
tains the e-mail address of the contact person for this session.The multicast
address where the session can be received is described in the c line and the
t line indicates when the session is active. The last line of the session-level
section, the a line, indicates that this is not an interactive session; it’s

Chapter 384

receive only. The format of the m lines is especially important. An m line
begins with the media type. In the previous example, the media types are
audio for the first media stream and video for the second and the third.

m=<media type> <port number> <transport protocol> <media formats>

The port number indicates where the media can be received. The trans-
port protocol field usually takes the value of RTP/AVP, but can take another
value if a protocol other than RTP is used. RTP/AVP refers to the
audio/video profile for RTP; in this example, encoded audio and video are
transported using RTP over UDP.

The media format depends on the type of media transported. For audio,
it’s the codec being used. In this example, a value of zero means that the
audio is encoded in a single channel using PCM �-law and sampled at 8
kHz.

The a�rtpmap lines convey information, such as the clock rate or num-
ber of channels, about the media formats used. In the second media stream
of this example, the media format number 31 is referred to as H.261 and it
uses a clock rate of 90 KHz.

Table 3-1 contains all the types defined by SDP and their meaning.

Extending SDP The media attribute lines, the a lines, provide a means
to extend SDP. When an application needs a feature missing in SDP, it can
add an a line containing it. For example, if the creator of a multicast ses-
sion wanted the receivers to play the audio at a certain volume, he or she
could define a new media attribute and add it at the end of the media-level
section.

m=audio 49170 RTP/AVP 0

a=volume:8

Applications that understand this new a line will play the audio at vol-
ume 8. When an application finds an a line that it doesn’t understand, it
simply ignores the line and proceeds as if no line had been encountered.The
application that failed to understand our new a�volume line could still
receive media properly, although it would not be able to play back at the
proper volume.

85The Internet Multimedia Conferencing Architecture

For those of you particularly interested in this topic, the IETF is already
evaluating some proposed extensions in the form of new a lines that will
provide QoS when SIP and SDP are used together [draft-manyfolks].

SDP Next Generation (SDPng)

Originally, SDP was designed to describe multimedia sessions in the
Mbone, but now it is finding use in many other contexts.Among others, SDP
is used with the Real-Time Streaming Protocol (RTSP) [RFC 2326] for
streaming services, with SIP for conference invitations, and for devices with
a master/slave configuration using Media Gateway Control Protocol
(MGCP) [RFC 2705] or H.248. Because SDP was not designed for working

Chapter 386

v Protocol version

b Bandwidth information

o Owner of the session and session identifier

z Time zone adjustments

s Name of the session

k Encryption key

i Information about the session

a Attribute lines

u URL containing a description of the session

t Time when the session is active

e E-mail address to obtain information about the session

r Times when the session will be repeated

p Phone number to obtain information about the session

m Media line

c Connection information

i Information about a media line

Table 3-1

SDP Types

in all these environments, it’s an imperfect fit and lacks features needed by
some applications.

These new contexts, as well as a number of future applications that
might need a session description mechanism, put new requirements [draft-
kutscher-mmusic-sdpng-req] on the successor of SDP. Currently, this is
called SDP next generation (SDPng) [draft-ietf-mmusic-sdpng] and is being
developed in the Multiparty Multimedia Session Control (MMUSIC) work-
ing group. SDPng will try to provide richer session descriptions and a bet-
ter means for capability negotiation than SDP. However, one of the key
concepts behind the design of SDPng is simplicity. Therefore, the trade-off
is that SDPng must provide a reasonable level of functionality within a rea-
sonable level of complexity.

Real-Time Streaming Protocol
(RTSP)
The Real-Time Streaming Protocol (RTSP) [RFC 2326] is used to control
multimedia servers, typically for streaming applications. The use of RTSP
between an end user and a multimedia server can be compared to the use
of the remote control with a VCR. The user can tell the multimedia server,
for instance, to initiate a certain audio/video stream using the play button,
to freeze the stream at a particular moment using the pause button, or to
begin replay at a certain position using the forward and rewind buttons.
The user can also command the server to record certain media using the
record button. RTSP can be used, for example, to implement a distributed
answering machine, or to record an event that is being multicast on the
Internet.

Usage Example of the Internet
Multimedia Conferencing Toolkit
Let us see how some of the protocols analyzed in this chapter can be com-
bined in order to multicast a film on the Internet. The end user controlling
the multicast of the film elaborates a session description using SDP,

87The Internet Multimedia Conferencing Architecture

indicating when the film is going to be multicast, what the film is about,
and the parameters needed to receive the media. These parameters will
include multicast addresses, port numbers, and media formats at a mini-
mum. This SDP session description is then distributed via SAP to potential
receivers, making use of multicast routing.

Interested end users will examine the SDP they’ve received and config-
ure their media tools properly to be able to watch the film at the appointed
time. When the film is programmed, the session controller will use RSTP to
alert the multimedia server where the film resides to begin multicast using
the SDP session description that was previously distributed.

The media server will multicast RTP packets containing the audio and
the video of the film. It will use RTCP to store statistics about the reception
quality that the receivers are experiencing. RSVP might also be used to
grant a certain QoS between media server and receivers.

Chapter 388

RTSP:
Stop playing the movie!

Multimedia server

RTSP:
Stop playing the movie!

The Internet

Figure 3-24
RTSP is used to
control remote
multimedia servers.

The Session
Initiation

Protocol: SIP

CHAPTER 44

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This chapter focuses squarely on the Session Initiation Protocol (SIP). We
describe the functionality SIP provides and the entities defined by the pro-
tocol. We analyze its good features and explain where SIP fits in the devel-
oping picture of communications. Finally, we explain why SIP is such a
compelling example of good protocol design. This chapter explains what we
can expect from SIP, but it does not go into protocol details. For information
on protocol operation, including messages, syntax, and concrete use cases,
turn to the next chapter. Separating protocol behavior from protocol opera-
tion enables the reader to distinguish between SIP’s functionality and how
this functionality is achieved.

SIP History
In the previous chapter, we saw that the Internet multimedia conferencing
architecture encompasses many protocols. These were not all developed at
the same time. Beginning with the first multimedia systems, this architec-
ture was dynamically evolving. New protocols were designed and existing
protocols were improved. As time went by, the Internet stretched to provide
more and more multimedia services.

Yet this architecture still had a missing piece: it did not have a way to
explicitly invite users to join a particular session. A multicast session could
be announced using Session Announcement Protocol (SAP), for instance, but
it was up to the potential receiver to check through all of the announced ses-
sions periodically to find one he or she wanted to join. It was impossible for
one user to inform another user about a session and invite him or her to
participate.

Suppose I’m watching an interesting movie being multicast on the
Mbone and I recall a friend who would probably also be interested in seeing
it. I need a simple means to alert my friend, send her a description, and
invite her to join the session (Figure 4-1).

Inviting users to Mbone sessions was the original purpose of SIP when
the Internet Engineering Task Force (IETF) first commissioned it. The pro-
tocol has evolved steadily and SIP is currently used to invite users to all
types of sessions, including multicast and point-to-point sessions.

SIP, as we know it today, was not designed from scratch, but resulted
from the merger of two IETF protocols proposed for the same purpose. SIP
picked up the best features from each protocol and from then on, all efforts
within the community converged on it.

Chapter 490

Session Invitation Protocol: SIPv1

Although the first voice transmissions over packet-switched networks took
place around 1974, the first multimedia conference systems appeared in the
early 1990s. Thierry Turletti developed the INRIA Videoconferencing Sys-
tem (IVS), a system for audio and video transmissions over the Internet. An
IVS user could call another user and they could establish a unicast session.
IVS could also be used in multicast sessions. Capitalizing on H.261 video
coding over the Internet, the work on IVS was instrumental in developing
the Real-time Transport Protocol (RTP) payload format for H.261 video
streams [RFC 2032].

Soon thereafter, Eve Schooler developed the Multimedia Conference Con-
trol (MMCC). MMCC software provided point-to-point and multipoint tele-
conferences, with audio, video, and whiteboard tools.

To connect various users, MMCC used the Connection Control Protocol
(CCP), a transaction-oriented protocol. A typical transaction consists of one
request (from the user) and one response (from the remote user). For trans-
port, CCP used User Datagram Protocol (UDP) so it implemented time-outs
and retransmissions to ensure the reliable delivery of protocol messages.

These two first multimedia systems gave way to the design of the Session
Invitation Protocol created by Mark Handley and Eve Schooler. The first
version of SIP, SIPv1, was submitted to the IETF as an Internet draft on
February 22, 1996. SIPv1 used Session Description Protocol (SDP) to
describe sessions and UDP as a transport. It was text based.

91The Session Initiation Protocol: SIP

This is a funny movie! I bet Laura
would love to watch it...
How could I tell her about it?

The Internet

Figure 4-1
SIP enables us to
invite users to
sessions.

The concept of registrations to conference address servers was promi-
nent in SIPv1. Once a user had registered his or her location, an address
server was able to route invitations to the proper user and also provide a
certain level of user mobility. If someone were away from his or her normal
workstation on business travel, for example, this user could choose to reg-
ister his or her temporary workstation and receive invitations to local
conferences.

Notably, SIPv1 only handled session establishment. Signalling stopped
once the user joined the session and mid-conference controls were yet to
come.

Simple Conference Invitation Protocol: SCIP

Also on February 22, 1996, Henning Schulzrinne submitted an Internet
draft to the IETF specifying the Simple Conference Invitation Protocol
(SCIP). SCIP was also a mechanism for inviting users to point-to-point and
multicast sessions. It was based on Hypertext Transfer Protocol (HTTP) and
thus utilized Transmission Control Protocol (TCP) as the transport proto-
col. Like SIPv1, it was text based. SCIP used e-mail addresses as identifiers
for users, aiming to provide a universal identifier for both synchronous and
asynchronous communications. SCIP signalling persisted after session
establishment to enable parameter changes in ongoing sessions and closing
existing sessions. Instead of recycling a mechanism for session description
like SDP, it defined a new format for this purpose.

Session Initiation Protocol: SIPv2

At the 35th IETF meeting in Los Angeles, Schooler presented SIP and
Schulzrinne presented SCIP. During this meeting and through the 36th
IETF meeting, the usual colorful level of discussion ensued. Eventually, it
was decided to merge the two protocols.

The resulting protocol kept SIP as a name, but changed the meaning of
the acronym to Session Initiation Protocol and advanced the version to
number 2 (Figure 4-2).

An Internet draft of SIPv2, authored by Mark Hanley, Schulzrinne, and
Schooler, was submitted to the IETF in San Jose during the 37th meeting
in December 1996. The new SIP was based on HTTP, but could use both
UDP and TCP as transport protocols. It used SDP to describe multimedia

Chapter 492

sessions, and it was text based. It remains the current version of the SIP
protocol.

SIP development efforts were the province of the Multiparty Multimedia
Session Control (MMUSIC) working group, chaired by Joerg Ott and Colin
Perkins. The first draft grew out of the feedback received by the authors
and discussions in the MMUSIC mailing list. In 1998, Jonathan Rosenberg
was added as a co-author of the specification because he had contributed so
much to the discussion, and in the following February (1999), SIP reached
the proposed standard level and was published as RFC 2543.

As time went by, SIP gained importance in the IETF, resulting in the for-
mation of a new SIP working group in September 1999. This working group
was originally chaired by Joerg Ott, Jonathan Rosenberg, and Dean Willis.
In August 2000, Brian Rosen replaced Rosenberg as co-chair because
Rosenburg and Willis changed corporate affiliations to the same company,
and diversity was desired among the chairs.

Close on the heels of the March 2001 IETF meeting, the SIP working
group was split in two. Discussions about the main SIP specification and its
fundamental extensions now take place in a group that continues to be
called SIP, whereas discussions about applications that use SIP are carried
out in a group called SIPPING. This division of labor should help manage
the enormous number of contributions related to SIP that the IETF is being
asked to consider.

Proposed Standard Status As of July 2001, SIP is still not a finished
product. Its current status is proposed standard. Further review is needed
before it can be awarded the next maturity level of draft standard, and it
must have had at least two different interoperable implementations.
Authors have received a large amount of review feedback from the com-
munity and the implementors’ experiences are being recorded. All fixes and

93The Session Initiation Protocol: SIP

Session Invitation Protocol
(SIPv1)

Session Initiation Protocol
(SIPv2)

Simple Conference Invitation Protocol
(SCIP)

Figure 4-2
SCIP and SIPv1 were
merged into SIPv2.

additions to the protocol are gathered in an Internet draft [draft-ietf-sip-
rfc2543bis] destined to become the draft standard RFC when SIP is truly
stable.

It is worth noting that although SIP is still a proposed standard, it is sta-
ble enough to be implemented in products. Developers hold periodic inter-
operability tests to ensure interoperability, originally known as bake-offs
but now somewhat stodgily renamed SIP interoperability events at the
behest of the baking industry (see http://www.cs.columbia.edu/ sip/sipit
/pillsbury.html for the story). The first bake-off took place in April 1999 at
Columbia University and now usually three SIP bake-offs take place in a
year. SIP bake-offs have proved useful for finding bugs in the specification
and elaborating solutions for them.

Functionality Provided by SIP
RFC 2543 describes the core of SIP: that is, the basic operation of the pro-
tocol. Besides this basic spec, a number of extensions to SIP have been
defined in other RFCs and Internet drafts (Figure 4-3). Once again, this
chapter will limit the discussion to the functionality provided by the basic
specification.

Session Establishment, Modification, and
Termination

SIP establishes, modifies, and terminates multimedia sessions. It can be
used to invite new members to an existing session or to create brand new
sessions. When SIP notifies my friend Bob that something he would find
interesting is being multicast on the Internet, I’m invoking an existing ses-
sion. However, if Bob calls up Laura to spread the news, this two-party call
constitutes a new multimedia session with a single audio component. In
this case, Bob is inviting Laura to join a session that has yet to be created.
Additionally, it will only be created if two conditions are met: (1) Laura is
willing to speak to Bob and (2) they can agree on the media parameters that
will be used.

Chapter 494

95The Session Initiation Protocol: SIP

SIP core specification SIP extensionsFigure 4-3
The SIP toolkit
consists of the core
specification and
several extensions.

SIP is independent of the type of multimedia session handled and of the
mechanism used to describe the session. It is equally useful for videocon-
ferences, audio calls, shared whiteboards, and gaming sessions. Sessions
consisting of RTP streams carrying audio and video are usually described
using SDP, but some types of session can be described with other descrip-
tion protocols. Assuming Bob wants to play chess with Laura, he has the
option of using a chess-specific session, which will be described by a chess-
specific description protocol instead of SDP. If Bob and Laura were to play
a video game over the Internet, they also would probably use a protocol
other than SDP to describe their gaming session.

In short, SIP is used to distribute session descriptions among potential
participants (Figure 4-4). Once the session description is distributed, SIP
can be used to negotiate and modify the parameters of the session and ter-
minate the session.

The following example illustrates all of these functions. Bob wants to
have an audio-video session with Laura and plans to use a Pulse Code Mod-
ulation (PCM) codec to encode voice. In this example, the session distribu-
tion part consists of Bob sending Laura a session description with a PCM
codec for the voice component of the session. Laura prefers to use a Global
System for Mobile Communications (GSM) codec because it consumes less
bandwidth, so she persuades Bob to do it her way. Both finally settle on a
GSM audio codec, but the session cannot be established until this negotia-
tion is concluded.

Suddenly, in the middle of the audio-video session, Laura decides she is
having a bad-hair day and wants to kill the video component. She modifies
the session for audio only. When Bob then decides the conversation is over
(I can’t imagine why), the session is terminated.

Just as telephone systems inform a caller about the status of his or her
call setup by playing different tones (busy tone or ringing tone), SIP pro-
vides the session initiator with information about the progress of his or her
session setup (Figure 4-5).

User Mobility

SIP can’t deliver a session description to a potential participant until he or
she has been located. Frequently, a single user might be reached at several
locations. For instance, a student using a computer room in the university
typically works on a different workstation every day. Thus, he or she is
reachable at different Internet Protocol (IP) addresses depending on which
computer is available and wants to receive incoming session invitations
only at his or her current location. Another person might want, for instance,
to receive session invitations on his or her workstation in the morning when
the user arrives at the office, on his or her desktop at home in the evening,
and on his or her mobile terminal when the user is traveling.

Chapter 496

I would like to speak to Laura and Tom.
I will use SIP to establish a voice session
among us.

Would you like to join
this session?

SIP message carrying
a session description

Session description

SIP distributes
the session
description
and invites
users to
participate in
the session.

Figure 4-4
Bob invites Laura and
Tom to a voice
session.

97The Session Initiation Protocol: SIP

Would you like to join a voice session?

I will call Laura to see how
she is doing.

Bob Laura

Laura is being alerted.
Her phone is ringing.

Laura is willing to join the session you proposed.
She has picked up the phone.

Conversation

Figure 4-5
SIP informs how
session establishment
progresses.

SIP URLs We’ve already mentioned that SIP provides some user mobil-
ity. Users in a SIP environment are identified by SIP Uniform Resource
Locators (URLs). The format of a SIP URL is similar to an e-mail address,
generally consisting of a username and a domain name, which looks some-
thing like this: SIP:Bob.Johnson@company.com.

In the previous example, if we consult the SIP server that handles the
domain company.com, we will find a user whose username is Bob.Johnson.
Bob’s URL might be SIP:Bob@131.160.1.112 instead, indicating that the
host whose IP address is 131.160.1.112 has a user whose username is Bob.

Registrations We’ve noted that users register their current location to
a server if they wish to be found. In this example, Bob is working on his
laptop, whose IP address is 131.160.1.112. His login name is Bob. He reg-
isters his current position with the company server (Figure 4-6).

Now Laura wants to call Bob. She has his public SIP address
(SIP:Bob.Johnson@company.com) because it’s printed on his business card.

So when the server at company.com is contacted and asked for Bob.John-
son, it knows where Bob.Johnson can be reached and a connection is made.

In this situation, SIP provides two modes of operation: redirect and
proxy. In the proxy mode of operation, the server contacts Bob at
131.160.1.112 and delivers Laura’s session description to him (Figure 4-7).

In the redirect mode, the server tells Laura to try SIP:Bob@131.160.
1.112 instead (Figure 4-8).

A user may very well register several locations at one server. Or the user
might register his or her locations with several servers. It’s not unusual for
various servers and locations to be contacted before a user is finally
reached.

SIP Entities
The SIP protocol defines several entities, and it’s vital to understand their
role inside any architecture that uses SIP.

User Agents

User Agent (UA) is the SIP entity that interacts with the user. It usually has
an interface towards the user. Say Bob wants to make a call over the Inter-
net with his computer. He launches the proper program that contains a SIP

Chapter 498

131.160.1.112

I am "Bob.Johnson."
Today I will be reachable at:
sip: Bob@123.160.1.112

SIP server at
company.comFigure 4-6

Bob registers his
current position to
the server.

99The Session Initiation Protocol: SIP

131.160.1.112

(2) Invittion to a session for
Bob@131.160.1.112 (1) Invittion to a session for

sip: Bob.Johnson@company.com

SIP server at
company.comFigure 4-7

Proxy SIP server.

131.160.1.112

(2) You better try to reach him at
Bob@131.160.1.112

(1) Invittion to a session for
sip: Bob.Johnson@company.com

(3) Invittion to a session for
sip: Bob@131/160.1.112

SIP server at
company.comFigure 4-8

Redirect SIP server.

User Agent. The user interacts with the UA through the aforementioned
interface—often a window with a selection of buttons. When Bob clicks the
Call Laura button, the UA triggers the appropriate SIP messages to estab-
lish the call.

Laura also has a SIP UA in her computer. When its UA receives the invi-
tation from Bob’s, it alerts Laura by showing a pop-up window with two
buttons: Accept call from Bob and Reject call from Bob. Depending on which
button Laura clicks, her UA sends SIP messages back to Bob’s UA. All inter-
actions between users and the SIP protocol are mediated by UAs.

However, keep in mind that some systems using SIP are not directly con-
nected to users. For example, Bob can redirect all session invitations
received from midnight to 7 A.M. to his SIP answering machine. The
machine will automatically establish sessions in order to record messages.
It also contains a UA—one that does not necessarily maintain interaction
with the user, but can still respond to invitations or forward invitations on
Bob’s behalf.

The lowly wake-up call is a good example of a session created automati-
cally. The UA at the hotel reception is programmed to call the guest’s UA at
time t.

Media Tools All in all, SIP delivers a session description to a SIP UA. If
the session described is a voice session, the UA will have to deliver it to the
voice tool that will handle the audio. For other types of sessions, the UA will
deliver the session to the proper media tool.

SIP UAs are sometimes incorporated into the same user interface with
media tools for the session. An audio/video session can’t be established
without a SIP UA, an audio tool, and a video tool. If these three are com-
bined under the same user interface, they appear as a single application to
the user: a videoconference application.

The separation between the SIP UA handling the delivery of a session
description and the media tools actually handling the contents of the ses-
sion description is powerful. This separation enables SIP to establish any
type of session.

What Does a SIP User Agent Look Like? SIP UAs are implemented
on top of many different systems. They can run, for instance, in a computer
as one among many applications, or they can be implemented in a dedicated
device, such as a SIP phone. The device type will not affect SIP. Media tools
might vary from device to device depending on the type of sessions invoked,
but the SIP behavior is always the same.

Chapter 4100

Nonetheless, from the user point of view, SIP devices can look very dif-
ferent from each other. This is because the user interface varies with the
kind of device. The user interface of a videoconference program running on
a computer will most likely be a window with a selection of buttons to click,
but a SIP phone will probably resemble a traditional telephone with the
buttons 0 through 9, *, and �. SIP devices range from powerful computers
accessing the Internet with a high-bandwidth connection to small devices
with low-bit rate wireless connections. Figure 4-9 shows some examples.

I should mention that work to adapt SIP for household appliances is
ongoing. Therefore, future examples of devices with SIP User Agents could
include refrigerators, toasters, and lamps.

We are focusing on telephony examples because they are easier to under-
stand and more immediately relevant for most readers; however, remember
that SIP is powerful precisely because it can be used to establish any kind
of session. Voice sessions are just one example.

101The Session Initiation Protocol: SIP

Figure 4-9
Examples of
devices that have
SIP user agents.

Redirect Servers

Redirect servers help locate SIP UAs by providing alternative locations
where the user can be reachable. For example, Laura wants to call Bob. On
her monitor, Laura clicks the button that says Call Bob. Her UA first tries
Bob’s public address, but the domain company.com has a SIP redirect server
handling incoming invitations. Instead, Laura’s UA contacts this redirect
server. The re-direct server knows that Bob can be located at
SIP:Bob@131.160.1.112 when he is working at his office or at SIP:Bob@uni-
versity.com when he is writing his dissertation. Thus, the redirect server
will recommend that Laura’s UA try SIP:Bob@131.160.1.112 and
SIP:Bob@university.com rather than SIP:Bob.Johnson@company.com. The
redirect server also has the capacity to prioritize and can tell Laura’s UA
that Bob is most likely to be reached at school rather than at work.

After being informed, Laura’s UA tries Bob on both recommended
SIP addresses. Note that a redirect server does not always return the
address of the UA where the user actually is; it may just as easily return
the address of another server with more knowledge about Bob’s location
instead (Figure 4-10).

This example shows that a redirect server does not initiate any actions
to locate a user, but merely returns a list of possible locations where the
user might be. The UA makes all of the attempts to locate the user. In this
example, it is Laura’s UA trying all possible locations until it finds Bob; this
is the main difference between a redirect server and a proxy server. Proxy
servers make subsequent attempts for the user rather than sending new
contact information to the user.

Group Addresses Redirect servers can also be used to implement group
addresses. To see how this works, assume that the public address for Com-
pany A’s support department is SIP:support@company.com. Because this
department has to give support around the clock, several people are always
at work. Bob works from 8:00 A.M. until 4:00 P.M., Peter works from 4:00 P.M.
until midnight, and Mary works from midnight until 8:00 A.M.. The redirect
server at company.com is able to return different addresses depending on
the time of the day so that if it receives a call for SIP:support@company.com
at noon, it automatically returns SIP:Bob.Johnson@company.com.

Chapter 4102

Proxy Servers

Let us assume now that the domain company.com has a proxy server
handling incoming invitations. When Laura’s UA tries SIP:Bob.Johnson@
company.com, it will reach the proxy server at company.com, which will
promptly try SIP:Bob@university.com on behalf of Laura’s UA. If domain
university.com also has a proxy server, it will try SIP:Bob@workstation1234.

103The Session Initiation Protocol: SIP

Workstation1234.university.com

(2) You better try to reach him at
SIP: Bob@university.com

(5) Invitation to a session for
SIP: Bob@workstation1234.university.com

(1) Invitation to a session for
SIP: Bob.Johnson@company.com

(3) Invitation to a session for
SIP: Bob@university.com

(4) You better try to reach him at
SIP: Bob@workstation1234.university.com

SIP server at
company.com

SIP server at
university.com

Figure 4-10
Scenario with two
redirect servers.

university.com, where Bob is finally reached. In this scenario, Laura’s UA
tries only one location, but several proxies are in the path between UAs
(Figure 4-11).

Forking Proxies When a proxy server tries more than one location for
the user, it is said to fork the invitation. Forking proxies can perform par-
allel or sequential searches depending on their configuration. A parallel
search consists of trying all of the possible locations at the same time,
whereas a sequential search consists of trying each location individually.

Group Addresses Proxy servers also create group addresses. Figure 4-12
shows a forking proxy receiving an invitation for SIP:sales@company.com
and trying all persons in the sales department until it finds one who is
available.

Chapter 4104

Workstation1234.university.com

(3) Invitation to a session for
SIP: Bob@workstation1234.university.com

(1) Invitation to a session for
SIP: Bob.Johnson@company.com

(2) Invitation to a session for
SIP: Bob@university.com

SIP server at
company.com

SIP server at
university.com

Figure 4-11
Scenario with two
proxy servers.

During session establishment, it is not uncommon for both kinds of
servers (proxies and redirects) to be involved. The general term SIP server
refers to both kinds of servers without differentiating on the basis of behav-
ior. Actually, the same SIP server can act as a redirect or as a proxy depend-
ing on the situation. For instance, a SIP server can redirect all session
invitations received for certain individuals and proxy the rest.

Registrars

Registrar refers to a SIP server accepting registrations. A registrar is usu-
ally co-located with a redirect server or a proxy server (Figure 4-13).

Location Servers

Location servers are not SIP entities, but they are an important part of any
architecture that uses SIP. A location server stores and returns possible

105The Session Initiation Protocol: SIP

Workstation1234.university.com

(3) I am busy

(5) OK, I am available

(4) Invitation to a session for
SIP: sales-person-2@company.com

(2) Invitation to a session for
SIP: sales-person-1@company.com

(1) Invitation to a session for
SIP: sales@company.com

SIP server at
company.com

Figure 4-12
The forking proxy
tries different
salespersons until it
reaches one who is
not busy.

Chapter 4106

131.160.1.112

I am "Bob Johnson."
Today I will be reachable at:
sip: Bob@123.160.1.112

Registrar at
company.comFigure 4-13

Bob registers his
current position to
the registrar.

locations for users. It can make use of information from registrars or from
other databases. Most registrars upload location updates to a location
server upon receipt. Figure 4-14 shows how this is done. In Figure 4-15, the
proxy server at company.com consults a location server for a SIP URL
where Bob might be reachable. The location server can provide the server
with this information because the registrar previously uploaded it.

However, SIP is not used between location servers and SIP servers. Some
location servers use Lightweight Directory Access Protocol (LDAP) [RFC
1777] to communicate with SIP servers.

Good Features of SIP
We have seen what functionality can be expected from the core SIP specifi-
cation and which entities it defines. Now let’s look at what makes SIP dif-
ferent from and better than many other protocols.

SIP Is Part of the IETF Toolkit

The IETF designed SIP with the Internet paradigm in mind.As a tool in the
IETF toolkit, it performs its role and then takes advantage of other Inter-
net mechanisms to perform additional tasks. This provides great flexibility
because systems using SIP in conjunction with other Internet protocols can
be upgraded in a modular way.

107The Session Initiation Protocol: SIP

131.160.1.112
I am "Bob Johnson."
Today I will be reachable at:
sip: Bob@131.160.1.112

SIP server (registrar and proxy) at
company.com

Location server

I am "Bob Johnson."
Today I will be reachable at:
sip: Bob@131.160.1.112

Figure 4-14
Registrar uploading
information to a
location server.

131.160.1.112 (4) Invitation to a session for
sip :Bob@131.160.1.112

SIP server (registrar and proxy) at
company.com

Location server

(1) Invitation to a session for
sip :Bob.Johnson@company.com

(2) Where is reachable
sip :Bob.Johnson@company.com?(3) Try sip :Bob@131.160.1.112

Figure 4-15
Proxy server
consulting a
location server.

For instance, if a new authentication mechanism is proposed in the IETF,
SIP systems can use it without implementing SIP modifications. A perfect
example is the work on SDP next generation (SDPng) that the MMUSIC
working group is undertaking. When SDPng is finalized, today’s SIP sys-
tems will be able to carry SDPng session descriptions instead of the SDP
descriptions that are carried today. SIP will be able to take advantage of
new Quality of Service (QoS) mechanisms as well. We call that future-proof.

Separation Between Establishing and
Describing a Session

SIP clearly distinguishes between session establishment and session de-
scription. As part of session establishment, SIP locates users as bidden, but
it is silent on the topic of what users can do once the session is established.
It does not define how a session should be described or session types. SIP
just provides connectivity; what users do with it is outside of the scope of
SIP.

This distinction makes SIP essentially cooperative. It can now be used
together with SDP, for instance, to establish Voice over IP (VoIP) sessions,
and it will soon be possible to combine SIP with new session description
protocols to establish types of sessions that do not yet exist.

The concept we’re describing is not dissimilar to the one that character-
izes the IP layer. We saw that the most valuable service provided by the
Internet is IP connectivity. All the rest are implemented taking IP connec-
tivity as a base. Again, how IP connectivity is used falls outside the scope of
IP itself. Hence, IP service creation is modular, fast, and efficient. SIP does
not even assume that the session it has established will take place in the
Internet. For instance, if Bob wants to invite Laura to join a conference call
that is taking place in the public-switched telephone network (PSTN), all he
has to do is use SIP to deliver the telephone number that she can dial to join
in. In this example, the session description would contain a telephone num-
ber instead of IP addresses and UDP ports. When SIP delivers the session
description to Laura, she reacts as she does to any kind of ping with the tool
she’s been given.

SIP provides just enough information for the invitee to accept the invi-
tation; it is an exemplary IETF specification in that it performs its task.
When we need to describe a session established by SIP, we should use
another protocol designed for that purpose other than SIP.

Chapter 4108

Intelligence in the End System: End-to-End
Protocol

The IETF community believes that end-to-end protocols are better for pro-
viding end-to-end services and that IP is an end-to-end protocol. IP provides
connectivity between end points separated by a network of intervening
routers. The routers perform the well-defined task of routing datagrams
as efficiently as possible. Similarly, SIP provides connectivity between users
with SIP servers. SIP servers have an equally well-defined task: routing
SIP requests based on the Request-URI and responses based on Via
headers.

SIP servers do not process session descriptions carried in SIP bodies
because they don’t need to in order to route SIP messages. This makes SIP
an efficient protocol, along with the fact that all intelligence in a SIP net-
work is located in the end systems—the UAs. SIP servers can be virtually
stateless and forget everything about the transactions they’re moving
because the information needed to route a SIP message is contained in the
message itself.

Interoperability

SIP is designed so that any implementation of the core protocol can inter-
operate with any other implementation and incorporates methods for nego-
tiating the extensions that will be used in a session. Two highly advanced
SIP UAs establishing a session are likely to use many extensions and
sophisticated features. Yet if one of these advanced UAs needs to establish
a session with a rudimentary UA, it always can. All SIP extensions are
designed to be modular so that their use can be individually negotiated. I
can pick one particular set of extensions for the first session I initiate and
a completely different set for the next one.

Negotiation guarantees real interoperability between all the SIP users in
the network. That’s something new in many voice applications where pro-
tocols (ISDN User Part [ISUP], for instance) may have many incompatible
flavors, necessitating the implementation of gateways between networks
that fail to speak the same ISUP. Any implementation of gateways for pro-
tocol translation is undesirable because it breaks the end-to-end model and
because some features present in a protocol flavor can be lost in the trans-
lation process. In contrast, SIP is a genuinely global protocol.

109The Session Initiation Protocol: SIP

Scalability

SIP pushes the intelligence to the end system and obviates the need to store
state information inside the network during a session. Once a user is
located at session establishment, end-to-end communication is possible
between end systems without the server’s assistance. Servers that do not
need to monitor signalling for the duration of the session can handle a
larger number of sessions.

Some State in the Network In the next chapters, we’ll see how SIP
servers can be classified by the amount of state information that they store.
But even when stateful, SIP servers that store state are used in the periph-
ery of the network, leaving stateless SIP servers in the core of the network,
where they have to handle a larger number of sessions. In part, SIP net-
works are highly scalable because they shift stateless operation to the
points where the network is stressed.

SIP as a Platform for Service Creation

This is undeniably the most important feature of SIP.All of the SIP features
explained so far are useful only insofar as they convert SIP into a good plat-
form for user services.

Reuse of Components SIP (deliberately) makes use of many Internet
components also exploited by other Internet applications. This makes SIP
the perfect protocol to combine into different services for the user. Specifi-
cally, its similarities with HTTP [RFC 2068] and Simple Mail Transfer Pro-
tocol (SMTP) [RFC 821] make it easy to combine the most successful
Internet services so far (Web and e-mail) with multimedia. SIP not only
integrates services, but it also delivers them to the user’s real location. For
those in search of the holy grail of unified communications, SIP represents
a revolution in combined services because SIP applications integrate Web
browsing, e-mail, voice calls, videoconferencing, presence information, and
instant messages in a straightforward way. Some people see SIP as the
telecommunications industry’s next killer app.

SIP Is Based on HTTP A SIP implementation is rather similar to an
HTTP implementation for the obvious reason that the former is based on
the latter. Both use a request/response model, both are text based, and both

Chapter 4110

have a similar format for encoding protocol messages. These similarities
enable an implementation to reuse code between the two protocols.

The utility in sharing code is highest for devices that have to provide Web
browsing and SIP-based services. A SIP mobile phone with wireless Inter-
net features will almost certainly implement both (Figure 4-16). Such
devices lack the huge hard disks and tons of memory you’re used to on the
desktop; they’re usually thin devices with serious footprint constraints for
which the capacity gained by reuse is substantive.

SIP Uses URLs to Address SIP Resources Fortunately, the format used by SIP
to address SIP entities is identical to the one used on the Web and by e-
mail systems. This gives tremendous flexibility to SIP redirections and lets
us integrate several forms of communication.

A redirect server typically returns an alternative address where the user
can possibly be located. The redirect server is actually returning a URL. In
most of our examples, it’s a SIP URL, but the server has no problem return-
ing a Web URL or an e-mail address.

111The Session Initiation Protocol: SIP

The Internet

Do you think I should
pack my coat for

our vacation?

Let me check the weather
forecast on the Internet...

Figure 4-16
Bob’s terminal
implements both
SIP and HTTP.

This way Bob can configure his SIP redirect server to send incoming
voice sessions to his e-mail account. The server obliges by returning
mailto:Bob.Johnson@company.com in response to a SIP request (Fig-
ure 4-17). Laura, who’s notoriously impatient, can choose between leaving
Bob a voice mail or writing him an e-mail. If Bob has redirected incoming
sessions on his Web page, she can amuse herself by looking at pictures of his
new puppy, car, or house while her call is in a queue.

Web pages can also include SIP URLs besides e-mail addresses, provid-
ing click-to-dial features.

Having a SIP URL that can be redirected to any other means of commu-
nication considerably reduces the amount of different contact information
needed by an individual. Currently, an average business card contains at
least a fixed phone number, a mobile number, a fax number, and an e-mail
address (Figure 4-18). SIP distills all this to a single URL.

Users will contact our SIP server specifying what type of service (voice
call, e-mail, fax) they want, and our redirect server will provide them with
the proper URL.

Same Routing Concept as SMTP SIP messages are routed in much the same
way as e-mail messages. They can also carry multipart message bodies
using Multipurpose Internet Mail Extensions (MIME) [RFC 2045]. However,
SIP is not good at transporting large amounts of data; it’s just not designed
as a transport protocol.

Chapter 4112

I'd rather drop
him an e-mail

Laura SIP proxy Bob

(2) You better try:
mailto: Bob.Johnson@company.com
SIP: Bob.VoiceMail@company.com

E-mail (mailto: Bob.Johnson@company.com)

(1) Invitation to a session for
SIP: Bob.Johnson@company.com

Figure 4-17
Laura can choose
between leaving
a voice mail or
sending an e-mail.

On the other hand, it does deliver instant messages exceptionally well,
which are small by definition and probably urgent, and intended to reach
users at their present location.The same features also make SIP suitable as
a protocol for presence. SIP registrars have to know when a user is online
in order to deliver messages to him or her. Combining presence information
with instant messages is another example of the advanced services that can
be implemented by using SIP.

SIP Uses Existing Infrastructure for Providing New Services For instance, a ser-
vice provider builds a SIP infrastructure for VoIP services, consisting of SIP
proxies, redirect servers, and location servers. Customers of this service
provider use SIP UAs to establish voice calls over the new infrastructure.
Because VoIP is the service that the customers want, the service provider
is successful.

But as time goes by, customers do not find VoIP that exciting any more,
and what they really want to do is play interactive games. The service
provider doesn’t have to modify or retrofit at this point; it just has to pro-
cure an updated SIP UA that uses a gaming session description protocol to
establish subscriber sessions instead of SDP. Because the SIP servers in the
network ignore the contents of the session description, the entire SIP infra-
structure built with VoIP in mind is instantly repurposed without any
changes to the network.

Widespread Knowledge of How to Program SIP Applications Programming
SIP applications requires certain skills that are already widespread among
programmers. Most programmers are used to Web applications, text
parsers, and scripting languages, which are exactly what come into play
when coding SIP applications.

Besides, because SIP messages are human readable, no need exists for
special protocol analyzers to discover why two different implementations do
not interact properly. In fact, no special knowledge is needed in order to cre-
ate a SIP service. Programmers fresh from the university are equipped with

113The Session Initiation Protocol: SIP

Bob Johnson
Telephone: +1 212 555 5555
Mobile: +1 212 555 5556
Fax: +1 212 555 5557
E-mail: Bob.Johnson@company.com

Bob Johnson

SIP: Bob.Johnson@company.com

Figure 4-18
Bob has a SIP
business card.

Chapter 4114

everything they need to innovate services, as long as they have
the imagination. Not so long ago, this was far from true. Highly specialized
knowledge was needed, and once the service was implemented, it was
not easy to test. (Not everybody has the requisite telephone switch handy.)
Today any personal computer can become a SIP server to test new
applications.

This has an important implication. It means that the people creating a
particular SIP service are the people who have the expertise on that par-
ticular service; that is, organizations creating gaming applications will
come to understand gaming and organizations developing messaging appli-
cations will come to understand messaging. Today’s programming practice
(much bemoaned) is to find a programmer who knows a protocol and teach
him or her how the applications should work. SIP enables people who know
the functional needs of a certain community to create their own services.

SIP Enables Application Decomposition SIP enables us to combine simple
applications into more complex services [draft-rosenberg-sip-app-
components]. For instance, if I want to build an application that gets input
in the form of a text in Spanish, translates it into English, and produces
output in the form of speech, I can look at the solution as several simple
applications working together. The first application performs text transla-
tion from Spanish to English. The second, which receives English text as
input, converts it into English speech as output. This example comprises
two application servers doing relatively simple things that can be tailored
a hundred ways to meet a user’s need. The user employs SIP signalling to
coordinate both application servers in order to obtain the expected global
result.

SIP:
Protocol

Operation

CHAPTER 55

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This chapter describes SIP in further detail. It outlines how SIP function-
ality is achieved: that is, which messages are exchanged between different
SIP entities and what their message formats are. We’ll also examine multi-
ple examples of how SIP works. These examples will usually consist of a
message flow that gives a global picture of SIP operation.

However, I have also included one example where the reader can see all
the messages in detail, including message headers, parameters, and session
descriptions. Although it is not the purpose of this book to analyze all the
protocol details, it is instructive to see, at least once, what SIP messages
look like.

Client/Server Transactions
SIP is based on the Web protocol Hypertext Transfer Protocol (HTTP) and
like HTTP, SIP is a request/response protocol. To understand the
request/response mechanism used in SIP, we’ll have to examine the follow-
ing definitions of client and server.

A client is a SIP entity that generates requests. A server is a SIP entity
that receives requests and returns responses. This terminology is inherited
from HTTP, wherein a Web browser contains an HTTP client. When I type
an address in my Web browser, such as http://www.accessmhtelecom.com, I
am sending a request to a particular Web server.The Web server sends back
a response with the information requested—namely, the Web page of
McGraw-Hill’s telecom publishing group.

SIP conforms to the same procedures. Following the same terminology,
when two user agents exchange SIP messages, the User Agent (UA) sending
requests is the User Agent Client (UAC) and the UA returning responses is
the User Agent Server (UAS). A SIP request, together with the responses it
triggers, is referred to as a SIP transaction.

SIP Responses

Upon reception of a request, a server issues one or several responses. Every
response has a code that indicates the status of the transaction. Status
codes are integers ranging from 100 to 699 and are grouped into classes, as
shown in Table 5-1.

Chapter 5116

A response with a status code from 100 to 199 is considered provisional.
Responses from 200 to 699 are final responses. A SIP transaction between
a client and a server comprises a request from the client, one or more pro-
visional responses, and one final response. (This rule has one exception, as
we’ll see in the next section.)

Together with the status code, SIP responses carry a reason phrase. The
latter contains human-readable information about the status code. For
instance, a status code of 180 means that the user invited to a session is
being alerted. Therefore, the reason phrase might contain “Ringing.” The
reason phrase can, of course, be written in a language other than English
because it will be read by a human. Accordingly, a computer processing a
SIP response ignores the reason phrase. It finds sufficient information in
the response code. However, it can display the reason phrase to the user,
who will certainly find it more useful to know that the remote SIP phone is
“Ringing” than to know a 180 response has been received. (From now on, we
will cite responses using the status code followed by the reason phrase: for
example, “180 Ringing.”) Table 5-2 contains all the status codes currently
defined with their associated default reason phrases.

SIP Requests

The core SIP specification defines six types of SIP requests, each of them
with a different purpose. Every SIP request contains a field, called a
method, which denotes its purpose. The list shows the six methods.

117SIP: Protocol Operation

Range Response Class

100—199 Informational

200—299 Success

300—399 Redirection

400—499 Client error

500—599 Server error

600—699 Global failure

Table 5-1

SIP Response
Classes.

Chapter 5118

100 Trying 413 Request entity too large

180 Ringing 414 Request-URI too large

181 Call is being forwarded 415 Unsupported media
type

182 Queued 420 Bad extension

183 Session progress 480 Temporarily not
available

200 OK 481 Call leg/transaction
does not exist

202 Accepted 482 Loop detected

300 Multiple choices 483 Too many hops

301 Moved permanently 484 Address incomplete

302 Moved temporarily 485 Ambiguous

305 Use proxy 486 Busy here

380 Alternative service 487 Request cancelled

400 Bad request 488 Not acceptable here

401 Unauthorized 500 Internal servere error

402 Payment required 501 Not implemented

403 Forbidden 502 Bad gateway

404 Not found 503 Service unavailable

405 Method not allowed 504 Gateway time-out

406 Not acceptable 505 SIP version
not supported

407 Proxy authentication
600 Busy everywhererequired

408 Request time-out 603 Decline

409 Conflict 604 Does not exist anywhere

410 Gone 606 Not acceptable

411 Length required

Table 5-2

SIP Response
Codes

� INVITE

� ACK

� OPTIONS

� BYE

� CANCEL

� REGISTER

We will see in subsequent chapters how some extensions to the core SIP
specification define additional methods.

Both requests and responses can contain SIP bodies. The body of a mes-
sage is its payload. SIP bodies usually consist of a session description.

INVITE INVITE requests invite users to participate in a session. The
body of INVITE requests contains the description of the session. For
instance, when Bob calls Laura, his UA sends an INVITE with a session
description to Laura’s UA. Let us assume that Bob’s UA uses Session
Description Protocol (SDP) to describe the session. Her UA receives the
INVITE with the following session description:

v=0

o=Bob 2890844526 2890842807 IN IP4 131.160.1.112

s=I want to know how you are doing

c=IN IP4 131.160.1.112

t=0 0

m=audio 49170 RTP/AVP 0

The INVITE received by Laura’s UA means that Bob is inviting Laura to
join an audio session. From the session description carried in the INVITE,
Laura’s UA knows that Bob wants to receive Real-time Transport Protocol
(RTP) packets containing Laura’s voice on 131.160.1.112 User Datagram
Protocol (UDP) port number 49170. Her UA also knows that Bob can
receive Pulse Code Modulation (PCM) encoded voice. (RTP/AVP0 in the m
line indicates PCM.)

Laura’s UA begins alerting Laura and returns a “180 Ringing” response
to Bob’s UA. When Laura finally accepts the call, her UA will return a “200
OK” response with a session description in it.

119SIP: Protocol Operation

v=0

o=Laura 2891234526 2812342807 IN IP4 138.85.27.10

s=I want to know how you are doing

c=IN IP4 138.85.27.10

t=0 0

m=audio 20000 RTP/AVP 0

At this point, Laura accepts the call and informs Bob that she will
receive RTP packets on 138.85.27.10 UDP port 20000 (Figure 5-1).

If, when Laura and Bob are in the midst of the session, one of them
wishes to modify the session, they just have to issue a new INVITE. This
type of INVITE, called a re-INVITE, carries an updated session description.
It might consist of new parameters such as port numbers for the existing
media, or it might add new media streams. For instance, Bob and Laura can
add a video stream to their voice conversation via a re-INVITE.

Significantly, SIP only handles the invitation to the user and the user’s
acceptance of the invitation. All of the session particulars are handled by
the session description protocol used (SDP in this case). Thus, with a dif-
ferent session description, SIP can invite users to any type of session.

Chapter 5120

LauraBob

(1) INVITE

(2) 180 Ringing

(3) 200 OK

I will call Laura to see
how she is doing.

Figure 5-1
Laura issues a final
response (200 OK)
for the INVITE she
received.

ACK ACK requests are used to acknowledge the reception of a
final response to an INVITE. Thus, a client originating an INVITE request
issues an ACK request when it receives a final response for the
INVITE, providing a three-way handshake: INVITE-final response-ACK
(Figure 5-2).

Why Does SIP Use a Three-Way Handshake? INVITE is the only
method that uses a three-way handshake as opposed to a two-way hand-
shake (METHOD-final response). Certain characteristics set the INVITE
method apart from other methods. When a client issues a request other
than INVITE, it expects a fast response from the server. However, the
response from an INVITE request might take a long time. When Bob calls
Laura, she may have to fish her SIP phone out of her coat pocket and press
buttons, so the “200 OK” response that will come will be more or less
delayed. Sending an ACK from the client to the server when the response
is received lets the server know that the client is still there and that the
session has been successfully established.

The three-way handshake also enables the implementation of forking
proxies.When one of these forks a request, the client who issued the request
will obtain several responses from different servers. Sending an ACK to
every destination that has responded is essential to ensuring SIP operation
over unreliable protocols such as UDP.

121SIP: Protocol Operation

LauraBob

(1) INVITE

(4) ACK

(2) 180 Ringing

(3) 200 OK

Conversation

Figure 5-2
Three-way
handshake:
INVITE-200 OK-ACK.

Besides the speedy session setup and forking, INVITE’s three-way hand-
shake also enables us to send an INVITE without a session description,
which will be sent later in the ACK. This feature is useful, for example,
when SIP interworks with other signalling protocols that use different mes-
sage sequencing.

However, the historical motivation for having a three-way handshake
can be found in the old SIPv1 draft, in the section about how to provide reli-
able delivery of session invitation. The draft introduced the ACK method in
order to avoid unsynchronized parties on session establishment, which
might occur when a two-way handshake is used over an unreliable trans-
port protocol such as UDP. Consider the following case where a two-way
handshake is implemented.

Bob would send an INVITE to Laura and retransmit it until it received
a final response from Laura. Until this final response is received, Bob can-
not know whether Laura received the INVITE or it got lost in the network.

Bob waits for a while and because he gets no answer, he gives up and
stops retransmitting the INVITE. Bob believes that no session has been
established.

At roughly the same time, Laura accepts Bob’s call and sends back a “200
OK” response. If this response gets lost, Bob will never receive it, so, Bob
still believes that no session has been established. Because Laura observes
that Bob has stopped retransmitting the INVITE, she assumes that Bob
has received her 200 OK. Therefore, Laura thinks that the session has been
successfully established (Figure 5-3).

Chapter 5122

LauraBob

(1) INVITE

(2) INVITE

(3) INVITE

(4) INVITE
Bob

gives up

(5) 200 OK

Hello...hello...
Anybody there?

Figure 5-3
This situation is
avoided by having a
three-way handshake
(INVITE-200 OK-ACK).

If a three-way handshake were in place for this scenario, Laura would
not receive an ACK for her 200 OK response, given that Bob gave up some
time ago. Thus, she would (correctly) think that the session was not estab-
lished.

CANCEL CANCEL requests cancel pending transactions. If a SIP server
has received an INVITE but not yet returned a final response, it will stop
processing the INVITE upon receipt of a CANCEL. If, however, it has
already returned a final response for the INVITE, the CANCEL request
will have no effect on the transaction.

In Figure 5-4, Bob calls Laura and her SIP phone begins ringing, but
nobody picks up for a while. Bob decides to hang up. He sends a CANCEL
request for his previous INVITE. Upon reception of the CANCEL, Laura’s
SIP phone stops ringing. The server sends back a 200 OK response for the
CANCEL, indicating that it was processed successfully.

It is important to remark that after the server has responded to the
CANCEL request, it responds to the previous INVITE as well. It sends a
“487 Transaction Cancelled” and the client finishes the INVITE three-way
handshake by sending an ACK (INVITE-487 Transaction Cancelled-ACK).
Therefore, the INVITE three-way handshake is always performed, even
when the transaction is cancelled.

CANCEL requests are useful when forking proxies (proxies that issue
more than one INVITE upon reception of just one INVITE) are in the path.
When a forking proxy is performing a parallel search, it tries several loca-
tions at once. For example, a forking proxy knows of three possible locations

123SIP: Protocol Operation

LauraBob

(4) 200 OK

(5) 487 Transaction cancelled

(1) INVITE

(3) CANCEL

(6) ACK

(2) 180 Ringing

Figure 5-4
Bob cancels his
INVITE.

where Bob might be reachable: SIP:Bob@131.160.1.112, SIP:Bob.Johnson@
company.com, and SIP:Bob@university.com. When this proxy receives an
INVITE from Laura to Bob, it will try these three locations in parallel (at
the same time). The forking proxy sends three INVITEs, one to each loca-
tion. Bob, who is currently working at 131.160.1.112, answers the call. The
forking proxy receives a 200 OK from SIP:Bob@131.160.1.112 and it for-
wards this response to Laura’s UA. Because the session is already estab-
lished between Laura and Bob, the forking proxy wants to stop the other
searches initiated, so it sends two CANCELs, one to each location, to close
out the searches (Figure 5-5).

Remember that a CANCEL request does not affect a transaction once a
final response has been sent. Therefore, in our example, even if the forking
proxy sends a CANCEL to SIP:Bob@131.160.1.112, the session between
Bob and Laura would persist. CANCEL cannot terminate an ongoing trans-
action. It is ignored by completed transactions.

Chapter 5124

(14) 487 Cancelled

(13) 200 OK

Laura
131.160.1.112

university.comcompany.com
Forking
proxy

(6) 200 OK
(5) 200 OK

(1) INVITE

(7) ACK

(15) ACK

(12) CANCEL

(11) ACK

(8) CANCEL

Conversation

(9) 200 OK

(10) 487 Cancelled

(4) INVITE

(3) INVITE

(2) INVITE

Figure 5-5
Proxy canceling
INVITE transactions.

125SIP: Protocol Operation

LauraBob

(1) INVITE

(4) ACK

(2) 180 Ringing

(3) 200 OK

(6) 200 OK

(5) BYE

Conversation

Figure 5-6
Laura sends a BYE
when she hangs up.

BYE BYE requests are used to abandon sessions. In two-party sessions,
abandonment by one of the parties implies that the session is terminated.
For instance, when Bob sends a BYE to Laura, their session is automati-
cally terminated (Figure 5-6). In multicast scenarios, however, a BYE
request from one of the participants just means that a particular partici-
pant leaves the conference. The session itself is not affected. In fact, it’s
common practice in large multicast sessions to not send a BYE when leav-
ing the session.

REGISTER Users send REGISTER requests to inform a server (in this
case, referred to as a registrar) about their current location. Bob can send
a REGISTER to the registrar at company.com directing that all incoming
requests for SIP:Bob.Johnson@company.com should be proxied, or redi-
rected, to SIP:Bob@131.160.1.112 (Figure 5-7).

SIP servers are usually co-located with SIP registrars. A SIP registrar
can send all information received in various REGISTER requests to a sin-
gle location server, making it available to any SIP server trying to find a
user.

REGISTER messages also contain the times when the registration per-
tains. For instance, Bob can register his present location until four o’clock in
the afternoon because he knows that’s when he will leave the office. A user
can also be registered at several locations at the same time, indicating to
the server that it should search for the user at all registered locations until
he or she is reached.

OPTIONS OPTIONS requests query a server about its capabilities (Fig-
ure 5-8), including which methods and which session description protocols
it supports. One SIP server might answer to an OPTIONS request that it
supports SDP as session description protocol and five methods: INVITE,
ACK, CANCEL, BYE, and OPTIONS. Because the server does not support
the REGISTER method, I can deduce that it is not a registrar. The
OPTIONS method might not look useful now, but as new extensions add
new methods to SIP, the OPTIONS method is a great way to discover which
methods a certain server supports.

An OPTIONS method also returns data that specifies which encodings
for message bodies the server understands. If a certain server understands,
for instance, a certain compression scheme, the client will be able to send
the session descriptions compressed and take the opportunity to save some
bandwidth.

Types of Proxy Servers
Proxy servers can be classified according to the amount of state information
that they store during a session. SIP defines three types of proxy servers:
call stateful, stateful, and stateless.

Chapter 5126

Registrar at
company.comBob

(1) REGISTER

(2) 200 OK

Figure 5-7
Bob registers his
current location to
the registrar at
company.com.

Call Stateful Proxy

Call stateful proxies need to be informed of all the SIP transactions that
occur during the session and therefore, they are always in the path taken by
SIP messages traveling between end users. These proxies store state infor-
mation from the moment the session is established until the moment it
ends.

An example of a call stateful proxy is a server that implements a call-
related service, such as receiving an e-mail at the conclusion of every call
with information about the duration of each call (Figure 5-9). To calculate
the length of the call, the proxy should be in the path of the INVITE that
initiates the call and also in the path of the BYE that finishes the call.

Stateful Proxy

Stateful proxies are sometimes called transaction stateful proxies because
the transaction is their sole concern. A stateful proxy stores state related to
a given transaction until the transaction concludes. It does not need to be in
the path taken by the SIP messages for subsequent transactions.

Forking proxies are good examples of stateful proxies (Figure 5-10). They
send INVITEs to several different places and have to store state about the
INVITE transaction in order to know whether all of the locations tried have
returned a final response or not. However, once the user is reached at a par-
ticular location, the proxy does not need to remain in the signalling path
any longer.

127SIP: Protocol Operation

SIP serverBob

(1) OPTIONS

(2) 200 OK

Figure 5-8
Bob queries a server
about its capabilities.

Generation of ACKs Figure 5-10 also shows how ACKs are generated
in SIP. We saw that ACKs are generated as final responses to an INVITE.
They are part of the three-way handshake and, depending on the type of
response the server returns, they are generated either by proxies or by the
UAC.

Proxy servers can only ACK non-successful final responses, which have
a status code that is greater than 299. Success responses (status code
between 200 and 299) are always ACKed by the UA initiating the INVITE.

In Figure 5-10, the proxy server ACKs non-successful responses in mes-
sages (4) and (7). However, the UA ACKs the 200 OK response in message
(11). This enables a proxy to try multiple locations without having to inform
the originating UA about the unsuccessful attempts to locate the final user.
Once a user responds positively to an INVITE, the originating UA must
receive the remote session description in order to establish the session.

Chapter 5128

Laura BobSIP proxy

(1) INVITE
(2) INVITE

(6) ACK

(8) BYE

(7) BYE

(5) ACK
(4) 200 OK

(3) 200 OK

(9) 200 OK

(10) 200 OK

E-mail

Your last call
lasted 5 minutes
and 27 seconds

Conversation

Figure 5-9
Stateful proxy
providing services
for the user.

Stateless Proxy

Stateless proxies don’t keep any state. They receive a request, forward it to
the next hop, and immediately delete all state related to that request. When
a stateless proxy receives a response, it determines routing based solely on
the Via header and it does not maintain state for it. (We’ll discuss Via head-
ers later in this chapter.)

Distribution of Proxies

An analysis of the IP traffic in a network invariably shows that the core is
more stressed than the edges. This is true of SIP traffic as well.

SIP servers in the core need to be able to handle many messages,
whereas SIP servers in the periphery do not have to support equally as
heavy loads. SIP is designed for stateless servers at the core. They perform

129SIP: Protocol Operation

(3) 404 Not found

Laura 131.160.1.112university.com
workstation1234Stateful

SIP proxy

(1) INVITE

(11) ACK

(8) INVITE

(12) BYE

(4) ACK

(2) INVITE

(7) ACK

(5) INVITE

(10) 200 OK
(9) 200 OK

(6) 404 Not found

Conversation

(13) 200 OK

Figure 5-10
Stateful forking proxy.

routing based on Request-URI or Via headers as fast and efficiently as we
know how to do it. At the edges of the network, call stateful and stateful
servers can be implemented to perform routing based on more complicated
variables (such as the time of day or identity of the sender in the From
field), or they can fork requests and provide services to the user.

Distributing servers this way makes SIP a very scalable protocol that
can be implemented in increasingly large networks such as the Internet.
SIP keeps the core fast and simple and pushes the intelligence to the
periphery of the network (Figure 5-11).

Format of SIP Messages
Protocol design proceeds in discrete stages. When it has been decided which
information will be exchanged between distributed systems, the next step
is to decide how this information should be encoded. This decision has basi-
cally two approaches: binary, which uses bit fields to encode information,

Chapter 5130

Core

Stateless proxies

Stateful proxies

Call stateful proxies

Figure 5-11
SIP keeps the core of
the network stateless.

and textual, which uses strings of characters. The following example illus-
trates the differences between the two approaches.

Users need to keep track of the current month on their computers, and a
server in the network has this information. We need a protocol that can
transfer this information from server to desktop. The current month field
can take exactly 12 possible values: January, February, March, April, May,
June, July, August, September, October, November, and December.

A text-based protocol would transmit the name of the month between
systems. Let’s say that the message contents are January. Every character
(letter) is typically encoded using one byte (8 bits). Thus, the message Jan-
uary will be encoded using 49 bits (7 letters times 8 bits).

A binary protocol, on the other hand, would define a table with possible
values and their corresponding encoding, as shown in Table 5-3.

Thus, to transmit the current month, the binary protocol would send a 4-
bit message containing 0000.

SIP uses text encoding as opposed to binary. This issue has created
heated discussions. Text vs. binary seems to be a quasi-religious debate in
which it is impossible to maintain a moderate opinion. Text proponents
claim that text-based protocols are debugged more easily because they can
be read directly by a human and that text protocols are more flexible and
easier to extend with new features.

Binary believers argue that binary protocols use bandwidth more effi-
ciently and can also be easy to debug and extend with the proper tools. Both
types of encoding have advantages and disadvantages that we won’t enu-
merate in this discussion, but keep in mind that SIP is a text-based proto-
col and exhibits all the pros and cons of text-based protocols in general.

131SIP: Protocol Operation

0000 January 0110 July

0001 February 0111 August

0010 March 1000 September

0011 April 1001 October

0100 May 1010 November

0101 June 1011 December

Table 5-3

Binary Encoding
of the Months

SIP Request Format

A SIP request consists of a request line, several headers, an empty line, and
a message body. Table 5-4 shows the format of a SIP request. The message
body is optional; some requests do not carry it.

Request Line A request line has three elements: method, Request-URI,
and protocol version. The method indicates the type of request, and we’ve
explained several in previous sections. The Request-URI indicates the next
hop, which is where the request has to be routed. In Figure 5-12, the SIP
proxy at company.com receives an INVITE with the Request-URI
SIP:Bob.Johnson@company.com. This proxy knows that Bob might be
reachable at two places so it generates two INVITEs. One will contain
SIP:Bob@university.com as the Request-URI and it will be sent to the server
at university.com.The second INVITE will have SIP:Bob@131.160.1.112 and
will be sent to 131.160.1.112. Hence, the Request-URI contains the address
of the next hop in the path.

Finally, we know the protocol version to be SIP/2.0. Therefore, the
request line of the INVITE received in the previous example by the server
at company.com would look like the following:

INVITE sip:Bob.Johnson@company.com SIP/2.0

SIP Response Format

A SIP response consists of a status line, several headers, an empty line, and
a message body. Table 5-5 shows the format of a SIP response. The message
body is optional; some responses do not carry it.

Chapter 5132

Request-line

Several headers

Empty line

Message body

Table 5-4

Format of an
SIP Request

Status Line A status line has three elements: protocol version, status
code, and a reason phrase. The current protocol version is written as
SIP/2.0. The status code reports transaction status. As described earlier,
status codes are integers from 100 to 699 and are grouped into six differ-
ent classes (refer to Table 5-1). The reason phrase is meant for human eyes
only. It is not meaningful for computers processing SIP responses. Below
there is an example of a status line.

SIP/2.0 180 Ringing

Reliable Transmission of Responses Final responses are transmitted
reliably between server and client, using retransmissions or a reliable
transport protocol to ensure delivery. Provisional responses are not. They
may either be received by the client or be lost in the network. SIP takes
this approach because it is more concerned with whether a session was
established or not, and the reasons why it wasn’t, than with how the ses-
sion setup is progressing.

Ergo in a SIP call, for instance, callers are guaranteed notification that
the call has been accepted, but might not know when the callee alert began
(Figure 5-13). SIP can be extended for reliable delivery of provisional
responses if necessary.

133SIP: Protocol Operation

Laura 131.160.1.112 university.comcompany.com

(1) INVITE SIP:
Bob.Johnson@company.com SIP/2.0

(3) INVITE SIP:
Bob@university.com SIP/2.0

(2) INVITE SIP:
Bob@131.160.1.112 SIP/2.0

Figure 5-12
The Request-URI
contains the next
hop in the path.

Status line

Several headers

Empty line

Message body

Table 5-5

Format of an
SIP Response

Chapter 5134

Bob Laura

(1) INVITE

(3) 200 OK

(2) 180 Ringing

(4) ACK

Conversation

Figure 5-13
SIP does not ensure
that provisional
responses are
received.

SIP Headers

SIP requests contain some SIP headers after the request line, whereas SIP
responses put them after the status line. Headers provide information
about the request (or response) and about the body it contains. Some head-
ers can be used in both requests and responses, but others are specific to
requests (or responses) alone. The header consists of the header name, fol-
lowed by a colon, followed by the header value.

For instance, the header called From, which identifies the originator of a
particular request, looks like the following:

From: Bob Johnson <sip:Bob.Johnson@company.com>

As can be seen in this example, a header value can have several fields. In
this example, the From header has two fields: a person’s name and his SIP
URL.

Table 5-6 contains the SIP headers defined in the core protocol.
In the following sections, I’ll explain the purpose of the most important

SIP headers and give simple usage examples of them.

Call-ID The Call-ID represents a SIP signalling relationship shared
among two or more users. It identifies a particular invitation and all of the
subsequent transactions related to that invitation in a format that looks
like the following:

Call-ID: ges456fcdw21lkfgte12ax@workstation1234.university.com

A server that is juggling SIP signalling for many sessions employs Call-
ID to associate incoming messages to the proper session. For instance, Bob
invites Laura to a chess session with a particular Call-ID. Laura’s UA
accepts and soon the game commences. After a while, Bob calls Laura to
speak with her while they are still playing chess. This INVITE from Bob’s
UA has a different Call-ID from the previous one.

When Bob and Laura finish speaking, Bob’s UA sends a BYE to
Laura’s UA to end the phone call. Laura’s UA uses the Call-ID of the BYE
message to decide whether to terminate the chess game or the conversation
(Figure 5-14).

135SIP: Protocol Operation

Accept Content-encoding Max-forwards Route

Accept-encoding Content-language MIME-version Server

Accept-language Content-length Organization Subject

Alert-info Content-type Priority Supported

Allow Cseq Proxy- Timestamp
authenticate

Also Date Proxy- To
authorization

Authorization Encryption Proxy-require Unsupported

Call-ID Error-info Record-route User-agent

Call-info Expires Require Via

Contact From Response-key Warning

Content-disposition In-reply-to Retry-after WWW-authenticate

Table 5-6

SIP Headers

Contact A Contact header provides a URL where the user can be reached
directly. This feature is important because it offloads SIP servers that do
not need to be in the signalling path after routing the first INVITE.

For instance, Laura calls Bob at SIP:Bob.Johnson@company.com. Com-
pany.com’s proxy forwards the INVITE to SIP:Bob@131.160.1.112, where
Bob turns out to be. He accepts the call. Bob’s UA returns a 200 OK
response with a Contact header:

Contact: Bob Johnson <sip:Bob@131.160.1.112>

When Laura’s UA receives this 200 OK response, it sends the ACK to
Bob’s UA. Because Bob’s location can be found in the contact header, the
ACK is sent directly to SIP:Bob@131.160.1.112 and the ACK does not tra-
verse the proxy at company.com.

Figure 5-15 shows how subsequent requests, such as the BYE, are sent
directly between session participants.

Chapter 5136

Bob Laura

(1) INVITE
Call-ID: 1234@131.160.1.112

(3) ACK
Call-ID: 1234@131.160.1.112

(2) 200 OK
Call-ID: 1234@131.160.1.112

(5) 200 OK
Call-ID: 5678@131.160.1.112

(6) ACK
Call-ID: 5678@131.160.1.112

(4) INVITE
Call-ID: 5678@131.160.1.112

(8) 200 OK
Call-ID: 5678@131.160.1.112

(7) BYE
Call-ID: 5678@131.160.1.112

Conversation

Figure 5-14
Call-ID helps to
distinguish between
different sessions.

137SIP: Protocol Operation

Laura BobSIP proxy

(1) INVITE SIP:
Bob.Johnson@company.com SIP/2.0

(2) INVITE SIP:
Bob@131.160.1.112 SIP/2.0

(5) ACK SIP: Bob@131.160.1.112 SIP/2.0

(1) BYE SIP: Bob@131.160.1.112 SIP/2.0

(4) 200 OK
Contact: SIP: Bob@131.160.1.112

(7) 200 OK

(3) 200 OK
Contact: SIP: Bob@131.160.1.112

Conversation

Figure 5-15
Contact headers can
skip a proxy server
once the end user is
located.

Cseq The Command Sequence (Cseq) header has two fields: an integer
and a method name. The numerical part of the Cseq is used to order dif-
ferent requests within the same session (defined by a particular Call-ID).
It is also used to match requests against responses. For instance, Bob sends
an INVITE to Laura with the following Cseq:

Cseq: 1 INVITE

Laura returns a 200 OK response with the same Cseq as the INVITE. If
Bob wants to modify the session already established, he will send a second
INVITE (re-INVITE) with the following Cseq:

Cseq: 2 INVITE

If a retransmission of the 200 OK response is delayed by the network
and arrives at Bob’s UA after it has generated the second INVITE, it knows
that this was a response for the first INVITE, thanks to the Cseq header
(Figure 5-16).

After an INVITE all subsequent requests (except ACK and CANCEL)
contain a Cseq which is the result of incrementing by one of the Cseqs of the
original request.

Cseq in ACK An ACK request has the same Cseq as the INVITE it acknowl-
edges. This enables proxies to generate ACKs for non-successful final
responses without creating new Cseqs. In fact, new Cseqs can only be cre-
ated by the UA, which ensures that Cseqs are unique.

Cseq in CANCEL A CANCEL request has the same Cseq as the request it
cancels. This also enables proxies to generate CANCELs without creating
new Cseqs. Moreover, CANCEL is the reason why the Cseq header includes
a method name after the numerical part.

Because the Cseq number of the INVITE and the CANCEL is the same,
a SIP client couldn’t distinguish responses for CANCEL and responses for
INVITE without an additional field. The method name inside Cseq solves
the problem (Figure 5-17).

From The From header contains the initiator of the request and a SIP
URL:

From: Bob Johnson <sip:Bob.Johnson@company.com>

Chapter 5138

Bob Laura

(1) INVITE
Cseq: 1 INVITE

(3) ACK
Cseq: 1 ACK

(2) 200 OK
Cseq: 1 INVITE

(5) 200 OK
Cseq: 2 INVITE

(6) ACK
Cseq: 2 ACK

(4) INVITE
Cseq: 2 INVITE

(8) 200 OK
Cseq: 3 BYE

(7) BYE
Cseq: 3 BYE

Figure 5-16
Cseq helps to
distinguish
transactions
inside a session.

Record-Route and Route These two headers are used by proxies that
want to be in the signalling path for the entire session. We saw that Con-
tact headers enable the UAs to send requests directly to each other. This
creates offloading proxies in the path; they route the first INVITE to the
proper destination and then let the UAs begin to exchange SIP signalling.
However, sometimes a proxy needs to stay in the signalling path, in which
case a mechanism is needed to keep UAs from exchanging SIP messages
on their own. This mechanism consists of two headers: Route and Record-
Route.

A proxy may want to remain in the signalling path after the first
INVITE for many reasons. One of them is security. Some domains have a
security proxy, a firewall, that filters incoming SIP messages. SIP messages
that do not successfully traverse the security proxy are not accepted into
the domain. Another reason is service provision. A proxy that provides a
session-related service needs to know as a matter of course when the ses-
sion is over; for our purposes, this is when one UA sends a BYE request to
another. We saw already an example of such a service in Figure 5-9. The call
stateful proxy of that example had to see the BYE from Laura to Bob in
order to e-mail Bob with information about the duration of the call.

Figure 5-18 illustrates how these two headers work. Laura sends an
INVITE to Bob. The INVITE traverses a SIP proxy that wishes to be in the
signalling path for subsequent requests between Laura and Bob. The proxy
adds a Record-Route header containing its address to the INVITE. Bob’s

139SIP: Protocol Operation

Bob Laura

(1) INVITE
Cseq: 1 INVITE

(2) CANCEL
Cseq: 1 CANCEL

(5) ACK
Cseq: 1 ACK

(3) 200 OK
Cseq: 1 CANCEL

(4) 487 Transaction cancelled
Cseq: 1 INVITE

Figure 5-17
The method name in
the Cseq permits
differentiating
responses for INVITEs
and CANCELs.

UA receives the INVITE complete with this Record-Route header and
includes it in the 200 OK response. Bob’s UA also adds its Contact header
to the response.

The maddr parameter that appears in the Record-Route just contains
the IP address of the server, which is added to record the server’s real IP
address for future requests.

Laura’s UA receives the 200 OK response and builds a Route header that
will be used in subsequent requests.The Route header is built from both the
Record-Route and the Contact header present in the response. Because only
one proxy needs to be in the signalling path, all the subsequent requests
from Laura to Bob (ACK and BYE in this example) will be sent to it and will
contain a Route header with Bob’s Contact address. This way, the proxy
knows to send the request to the address contained in the Route header.

Several Proxies The previous example shows how Record-Route works to
inform Laura’s UA that subsequent requests have to be sent through the
proxy rather than directly to Bob. However, it does not show why the Route
header is needed. A scenario with more proxies can help explain the pur-
pose of the Route. Figure 5-19 contains three proxies: P1, P2, and P3. P1
and P3 have to be in the signalling path, but P2 does not. We can see how
the ACK from Laura to Bob contains a Route header telling P1 to forward
the request to P3. The last address in the Route header is Bob’s Contact
address.

Chapter 5140

BobLaura SIP proxy

(7) BYE SIP: Bob.Johnson@company.com SIP/2.0
Route:<SIP: Bob@131.160.1.112

(1) INVITE SIP:
Bob.Johnson@company.com SIP/2.0 (2) INVITE SIP:Bob@131.160.1.112 SIP/2.0

Record-Route:<SIP:Bob.Johnson@company.com;
maddr=131.160.1.112

(3) 200 OK
Contact: <SIP:Bob@131.160.1.112>

Record-Route:<SIP:Bob.Johnson@company.com;
maddr=131.160.1.112

(10) 200 OK

(8) BYE SIP:Bob@131.160.1.112 SIP/2.0

(6) ACK SIP:Bob@131.160.1.112 SIP/2.0

(9) 200 OK

Conversation

(5) ACK SIP:Bob.Johnson@company.com SIP/2.0
Route:<SIP:Bob@131.160.1.112>

(4) 200 OK
Contact:<SIP:Bob@131.160.1.112>

Record–Route:<SIP:Bob.Johnson@company.com;
maddr=123.160.1.110

Figure 5-18
Route headers have a
proxy staying in the
signalling path
throughout the
whole session.

Note that Figure 5-19 does not contain the real format of Contact,
Record-Route, and Route headers as Figure 5-18 did. Instead, it uses a sym-
bolic format that just indicates which addresses are contained in each
header.

To The To header always contains the recipient of the request. It usually
contains the public address of the destination party as well. It is important
to make a distinction between the To header of a request and the Request-
URI. The To header, which remains the same throughout the session, is
intended for the remote UA. It cannot be changed by proxies.

The Request-URI contains the address of the next hop in the signalling
path and is therefore changed by every proxy in the path. Figure 5-20 illus-
trates the use of each.

Laura calls Bob using his public address, SIP:Bob.Johnson@company.
com. This SIP URL will be inserted in the To header and it will not vary
during the session; that is, all of the requests from Laura to Bob will have
the same To field.

141SIP: Protocol Operation

BobLaura P1 P2 P3

(1) INVITE

(9) ACK
Route:P3
Route:Bob

(8) 200 OK
Contact: Bob

Record-Route:P3
Record-Route:P1

(5) 200 OK
Contact: Bob

Record-Route:P3
Record-Route:P1

(6) 200 OK
Contact: Bob

Record-Route:P3
Record-Route:P1

(7) 200 OK
Contact: Bob

Record-Route:P3
Record-Route:P1

(4) INVITE
Record-Route:P3
Record-Route:P1

(3) INVITE
Record-Route:P1

(2) INVITE
Record-Route:P1

(12) BYE
Route: P3

Route: Bob
(13) ACK

Route: Bob

(10) ACK
Route: Bob

(14) ACK

(11) ACK

(17) 200 OK

(15) 200 OK
(16) 200 OK

Conversation

Figure 5-19
P2 does not need to
be in the signalling
path.

Laura places the same SIP URL in the Request-URI so it will send the
request to the SIP at company.com. This proxy performs a parallel search
by trying two different SIP URLs: SIP:Bob@131.160.1.112 and SIP:Bob@
university.com.

Both INVITEs sent by the proxy at company.com have the same To
header, but they have different Request-URIs.

Via Via headers store all the proxies that handle the request. Hence, they
contain the path taken by the request (Figure 5-21). This information is
used for detecting routing loops. If a request is forwarded in a loop, any
proxy can notice it simply by inspecting the Via headers. If it finds its
address there, the proxy knows that it has already handled this request. A
typical Via header looks like the following:

Via: SIP/2.0/UDP workstation1234.company.com

Via headers are also used to route responses towards the client who gen-
erated the request. This way, a SIP response traverses the same set of prox-
ies as the request, but in the opposite direction.

SIP Bodies

Both requests and responses may contain message bodies, separated
from the message headers by an empty line. The message body carried by
SIP messages is usually a session description, but it can consist of any
opaque object. Because SIP proxies do not need to examine the message

Chapter 5142

university
.comLaura P2 131160.1.112

(1) INVITE
SIP: Bob.Johnson@company.com SIP/2.0

To: SIP:Bob.Johnson@company.com (2) INVITE
SIP: Bob@131.160.1.112 SIP/2.0

To: SIP:Bob.Johnson@company.com

(3) INVITE
SIP: Bob.Johnson@university.com SIP/2.0

To: SIP:Bob.Johnson@company.com

Figure 5-20
The To header does
not change through
a session.

body, content is transparent to them. As a result, session descriptions are
transmitted end to end between UAs. All information proxies need in
order to route SIP messages is contained in the request and status lines
and in the SIP headers. Because SIP bodies are only meaningful to
the UA, message bodies can be encrypted end to end without losing any
functionality.

Some proxies, however, might want to examine the session description.
An example is a security proxy (firewall) that wants information about
media being exchanged so that it can exclude unauthorized flows. For
instance, if a company decides that its employees cannot establish video-
conferences, the firewall can intercept all video streams while still letting
audio streams pass through.

The following is an example of an SDP session description in a SIP body:

v=0

o=Bob 2890844526 2890842807 IN IP4 131.160.1.112

s=I want to know how you are doing

c=IN IP4 131.160.1.112

t=0 0

m=audio 49170 RTP/AVP 0

143SIP: Protocol Operation

BobLaura SIP proxy

(4) 200 OK
Via: SIP/2.0/UDP workstation1000.university.com: 5060

(1) INVITE SIP:Bob.Johnson@company.com SIP/2.0
Via: SIP/2.0/UDP workstation1000.university.com: 5060 (2) INVITE SIP:Bob@131.160.1.112 SIP/2.0

Via: SIP/2.0/UDP 131.160.1.100: 5060
Via: SIP/2.0/UDP workstation1000.university.com: 5060

(3) 200 OK
Via: SIP/2.0/UDP 131.160.1.100: 5060

Via: SIP/2.0/UDP workstation1000.university.com: 5060

(6) BYE SIP:Bob.Johnson@company.com SIP/2.0
Via: SIP/2.0/UDP workstation1000.university.com: 5060

(5) ACK Bob.Johnson@company.com SIP/2.0
Via: SIP/2.0/UDP workstation1000.university.com: 5060

Conversation

(7) 200 OK
Via: SIP/2.0/UDP workstation1000.university.com: 5060

workstation1000.university.com 131.160.1.112131.160.1.100

Figure 5-21
Via headers store
the path taken by
a request.

Just as e-mail messages can carry more than one attachment, SIP mes-
sages can carry several bodies. For instance, Laura may send an INVITE
with two bodies: a session description and her photo. That way, Bob’s UA
can display her photo on the screen while Bob is alerted.

Transport Layer
We learned previously that SIP is an application layer protocol. Therefore,
it makes use of transport layer protocols to transmit requests and
responses. The behavior of any application layer protocol varies with the
type of transport used. If it’s reliable, the application layer protocol builds a
message and delivers it to the transport layer, fully expecting that the mes-
sage will arrive at the destination. The application layer does not know how
the transport layer accomplishes its delivery; it just knows that the task is
performed.

How is it performed? Typically, the transport layer will retransmit the
message until the other end receives it and sends back some type of
acknowledgement message. These retransmissions are transparent to the
application layer.

On the other hand, if an application layer protocol makes runs on top of
an unreliable transport layer protocol such as UDP, it cannot assume deliv-
ery. Therefore, application layer retransmissions have to be implemented.
They are typically implemented as follows.

The application layer protocol builds a message and passes it to the
transport layer. Should it fail to receive a confirmation of reception from the
destination in a certain period of time, it will build the same message again
and pass it to the transport again.

By utilizing application layer time-outs with its retransmissions, an
application layer protocol can still exploit unreliable transport mechanisms.

Let us now see how SIP works over both types of transports.

INVITE Transactions

Because INVITE transactions involve a three-way handshake and an ACK
request, they require different handling than any other transaction. There-
fore, SIP entities treat INVITEs and ACKs in different ways than other
methods.

Chapter 5144

Hop-by-Hop Treatment Remember that when proxies are in the path
between two UAs, different transport protocols may also be between them
(Figure 5-22). A UA using a reliable transport protocol towards a proxy can-
not assume that same transport will be used end to end until the remote
UA is reached.

SIP provides a mechanism to ensure that the INVITE will eventually be
delivered; namely, it makes proxies responsible for getting an INVITE to
the next hop in its path. Note that stateless proxies cannot assume this
responsibility because they don’t maintain the state information needed for
retransmission when an INVITE gets lost. Therefore, next hop with respect
to transport refers to the next stateful proxy (or the destination UA).

Transmitting an INVITE Because both a UA and a proxy have the
same responsibility of ensuring that the INVITE reaches the next hop, the
mechanisms used between a UA and a proxy, between two proxies, and
between a proxy and a UA are exactly the same. In this section, we will
explain the behavior of a UA sending an INVITE to a proxy, but that proxy
will use exactly the same mechanisms towards the next proxy in the path.

A SIP UA sending an INVITE to a proxy over a reliable transport proto-
col does not have to perform any special task, but if an unreliable transport
protocol such as UDP is used, it must be prepared to retransmit, sometimes
repeatedly, until a previrional response is received. (Figure 5-23).

Proxy servers receiving an INVITE always generate a 100 Trying provi-
sional response. A UA receiving an INVITE can generate any provisional
response, such as 180 Ringing.

145SIP: Protocol Operation

Laura Proxy Proxy Proxy Bob

TCP UDP TCP UDP

Figure 5-22
Different types
of transports are
between Laura
and Bob.

Transmitting Responses to an INVITE We have seen that provisional
responses are used to prevent hop-by-hop INVITE retransmissions.
However, nothing ensures that a provisional response from the callee’s UA
will reach the caller’s UA. Proxies in the path will usually forward the
response to the previous hop once, but will not retransmit if it fails to arrive
(Figure 5-24).

In contrast, SIP guarantees that final responses arrive at their intended
destination. Successful responses (200 to 299) are delivered reliably to the
originating UA. Non-successful final responses (300 to 699) use the same
hop-by-hop mechanism as INVITE.

Non-successful Final Responses The idea behind transmitting non-successful
final responses is the same as that behind transmitting INVITEs. Every
server ensures that the previous hop receives the response and then the
previous hop assumes responsibility for handling the response.

A UA using an unreliable transport protocol is going to retransmit the
non-successful final response until an ACK arrives (Figure 5-25).

In theory, a UA using a reliable transport protocol would not have to
make use of the ACK. However, in order to make the protocol look homoge-
neous across reliable and unreliable transports, ACKs are used in both.

Chapter 5146

UA Proxy

(1) INVITE

(4) INVITE

(5) 100 Trying

(2) 100 Trying

(3) INVITE

Figure 5-23
INVITEs retransmit
until a provisional
response arrives.

147SIP: Protocol Operation

Proxy Bob

(1) 404 Not Found

(3) 404 Not Found

(4) 404 Not Found

(5) ACK

(2) ACK

Figure 5-25
The 404 Not
Found response is
retransmitted until
the ACK arrives.

(2)100 Trying

(1) INVITE

(4)100 Trying

(11)180
Ringing

(10)180
Ringing

(3) INVITE

(6)100 Trying

(5) INVITE

(8)100 Trying

(9)180
Ringing

(7) INVITE

Laura Proxy Proxy Proxy Bob
Figure 5-24
Provisional responses
are not transmitted
reliably end to end.

I’ve mentioned some situations in which non-successful final responses
are not transmitted to the originating UA. Figure 5-26 shows how the fork-
ing proxy at company.com receives 404 Not Found responses that it does not
forward to Laura’s UA, thanks to the hop-by-hop transport mechanism used
for this kind of response.

Successful Final Responses Successful final responses are transmitted reli-
ably end to end between UAs and do not need the hop-by-hop mechanism
used by other final responses (Figure 5-27). Only the UA that originated an
INVITE can send an ACK for a final successful response. Therefore, regard-
less of the transport protocol used (reliable or unreliable), a UA retransmits
successful final responses until it receives an ACK from the originating UA.

Proxies in the path simply forward successful final responses and their
ACKs. They are not implicated in reliability.

Figure 5-28 shows the whole session establishment process from the
INVITE until the actual conversation takes place.

CANCEL Transactions

As hop-by-hop transactions, CANCEL transactions are handled in a special
way. When a UA sends a CANCEL to a proxy, the proxy responds with a
final response. At that point, the CANCEL transaction is finished for the
UA. Next, the proxy will send another CANCEL to the next hop, and it will
also receive a final response. You can see that reliability for CANCEL
requests is easy to accomplish by retransmission (Figure 5-29).

Chapter 5148

(3) 404 Not found

Laura 131.160.1.112university.com
workstation1234Forking

Proxy

(1) INVITE

(11) ACK

(8) INVITE

(4) ACK

(2) INVITE

(7) ACK

(5) INVITE

(10) 200 OK
(9) 200 OK

(6) 404 Not found

Conversation

Figure 5-26
The forking proxy
does not forward
404 Not Found
responses to Laura.

149SIP: Protocol Operation

(2) 100 Trying

(1) INVITE

(4) 100 Trying

(11) 180
Ringing

(13) 200 OK
(12) 200 OK

(14) 200 OK
(15) 200 OK

(10) 180
Ringing

(3) INVITE

(6) 100 Trying

(5) INVITE

(8) 100 Trying

(7) INVITE

Laura Proxy Proxy Proxy Bob

Conversation

(16) ACK

(9) 180
Ringing

Figure 5-28
The whole session
establishment
process.

(6) 200 OK

(10) 200 OK
(9) 200 OK

(8) 200 OK
(7) 200 OK

Laura Proxy Proxy Proxy Bob

(11) ACK

(4) 200 OK
(3) 200 OK

(2) 200 OK
(1) 200 OK

(5) ACK

Figure 5-27
Successful final
responses are
transmitted reliably
end to end.

Other Transactions

In the case of INVITE, ACK, and CANCEL requests, SIP provides reliabil-
ity mechanisms suitable for the characteristics that all three exhibit. The
remaining SIP requests follow common rules. OPTIONS, BYE, and REG-
ISTER are treated in the same way with respect to reliability. In the next
chapter, we will see that this commonality enables the protocol to be
extended with new methods; a proxy will apply the common reliability rules
to any unknown method. Therefore, regarding reliability, no difference
appears between a BYE and any new method.

The common reliability rules also employ the hop-by-hop mechanism
used for INVITEs. A UA makes sure the request is received by the next
proxy, and then the next proxy ensures that the following proxy in the path
receives it, and so on. When the final response comes from the remote end,
the proxy will ensure that it is delivered to the UA that originated the
request.

For reliable transport, the UA sends the request to the proxy. When the
final response arrives, the proxy will return it to the UA also using reliable
transport (Figure 5-30). Any provisional response that arrives before the
final response is also sent to the UA over the reliable transport protocol.

For unreliable transport, the UA has to ascertain that the proxy receives
the request. When the proxy receives a response from the remote end, it has

Chapter 5150

UA Proxy

(1) CANCEL

(4) CANCEL

(5) 200 OK

(2) 200 OK

(3) CANCEL

Figure 5-29
The CANCEL request
is retransmitted until
the final response
arrives.

151SIP: Protocol Operation

UA Proxy

(1) BYE

(2) 100 Trying

(3) 200 OK

Figure 5-30
The reliable transport
ensures that both
requests and
responses arrive to
their destination.

to ensure that the UA also receives it. The UA retransmits the request until
the proxy proffers a final response. The proxy retransmits its final response
as long as it continues receiving request retransmissions. When retrans-
missions stop, the proxy determines that the UA has received the final
response (Figure 5-31).

Detailed Example
Putting together all these pieces, we can now explore an example of how
SIP works in detail.As noted, the examples usually consist of message flows
that let us schematize SIP transactions and message exchanges. It is usu-
ally not necessary to examine all the parameters of each message to under-
stand a particular scenario. In this scenario, we do so deliberately to display
SIP messages with all their headers and parameters.

SIP Call Through a Proxy

In Figure 5-32, Laura calls Bob at his public address, but he isn’t there. A
proxy server at company.com routes the call to his current location:
SIP:Bob@131.160.1.112.

This example comprises three different transactions: INVITE, ACK, and
BYE.

INVITE from Laura’s UA to SIP Proxy Laura’s UA places Bob’s pub-
lic address in the To field and in the Request-URI. It adds a Via header with
its address and creates a message body with an SDP session description.
Laura wants to receive RTP packets containing PCM voice on UDP port
20002. The request is sent to the proxy at company.com because the domain
part of the Request-URI is company.com.

INVITE sip:Bob.Johnson@company.com SIP/2.0

Via: SIP/2.0/UDP workstation1000.university.com:5060

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>

Chapter 5152

UA ProxyProxy

(1) BYE

(9) BYE

(2) BYE
(3) 100 Trying

(4) BYE

(7) BYE

(12) BYE

(5) 100 Trying

(13) 200 OK

UDP TCP

(8) 200 OK

(10) 200 OK

(11) BYE

(6) 200 OK

Figure 5-31
Provisional responses
do not stop request
retransmissions.

153SIP: Protocol Operation

(6) 200 OK

(4) 180 Ringing

(1) INVITE
(2) INVITE

(5) 200 OK

(3) 180 Ringing

Laura SIP proxy Bob

Conversation

(9) 200 OK

(7) ACK

131.160.1.112131.160.1.110workstation1000.university.com

(8) BYE

Figure 5-32
SIP call through
a proxy

Call-ID: 12345678@workstation1000.university.com

CSeq: 1 INVITE

Contact: Laura Brown <sip:Laura@workstation1000.university.com>

Content-Type: application/sdp

Content-Length: 154

v=0

o=Laura 2891234526 2891234526 IN IP4 workstation1000.university.com

s=Let us talk for a while

c=IN IP4 138.85.27.10

t=0 0

m=audio 20002 RTP/AVP 0

INVITE from SIP Proxy to Bob The SIP proxy at company.com
receives the INVITE request. The host part of the Request-URI reads
Bob.Johnson. The proxy knows that Bob.Johnson may be reachable at
SIP:Bob@131.160.1.112. Thus, it creates a new INVITE with Bob’s location
as the Request-URI, adding its address to the request as a Via header:
131.160.1.110. Notice that the message body remains untouched. SIP
servers do not typically modify message bodies.

INVITE sip:Bob@131.160.1.112 SIP/2.0

Via: SIP/2.0/UDP 131.160.1.110

Via: SIP/2.0/UDP workstation1000.university.com:5060

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>

Call-ID: 12345678@workstation1000.university.com

CSeq: 1 INVITE

Contact: Laura Brown <sip:Laura@workstation1000.university.com>

Content-Type: application/sdp

Content-Length: 154

v=0

o=Laura 2891234526 2891234526 IN IP4 workstation1000.university.com

s=Let us talk for a while

c=IN IP4 138.85.27.10

t=0 0

m=audio 20002 RTP/AVP 0

Provisional Response from Bob to Proxy Upon receiving the
INVITE, Bob’s UA must initiate alerting, so it returns a provisional
response announcing that alerting has begun. The Via headers are copied
from the INVITE received. They will ensure that the response traverses the
proxy first, 131.160.1.110, and then arrives at Laura’s UA, worksta-
tion1234.university.com at UDP port number 5060.

Bob’s UA adds a Contact header to the response containing the SIP URL
where Bob can be reached directly; from now on, subsequent requests will
be sent directly from Laura’s UA to Bob’s UA.

Bob’s UA also adds a tag parameter to the To header, naming the SIP UA
that Bob is currently using. The tag info helps to differentiate the responses
that Laura might get if a forking proxy in the path tried to reach Bob at sev-
eral locations. To avoid confusing Laura’s UA, each of Bob’s UAs will have
answered with a different tag.

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP 131.160.1.110

Via: SIP/2.0/UDP workstation1000.university.com:5060

Chapter 5154

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>;tag=314159

Call-ID: 12345678@workstation1000.university.com

CSeq: 1 INVITE

Contact: Bob Johnson <sip:Bob@131.160.1.112>

Provisional Response from Proxy to Laura Upon receipt of this
response, the proxy removes the Via header with its own address and sends
the response to the address contained in the next Via header. This proxy
takes no further action.

SIP/2.0 180 Ringing

Via: SIP/2.0/UDP workstation1000.university.com:5060

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>;tag=314159

Call-ID: 12345678@workstation1000.university.com

CSeq: 1 INVITE

Contact: Bob Johnson <sip:Bob@131.160.1.112>

Final Response from Bob to Proxy When Bob accepts the call, his UA
returns its SDP session description. It will receive RTP packets on UDP
port 41000.

SIP/2.0 200 OK

Via: SIP/2.0/UDP 131.160.1.110

Via: SIP/2.0/UDP workstation1000.university.com:5060

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>;tag=314159

Call-ID: 12345678@workstation1000.university.com

CSeq: 1 INVITE

Contact: Bob Johnson <sip:Bob@131.160.1.112>

Content-Type: application/sdp

Content-Length: 154

155SIP: Protocol Operation

v=0

o=Bob 2891234321 2891234321 IN IP4 131.160.1.112

s=Let us talk for a while

c=IN IP4 131.160.1.112

t=0 0

m=audio 41000 RTP/AVP 0

Final Response from Proxy to Laura The proxy server routes the
final response in the same way it routed the previous provisional response.
In other words, it removes the first Via header and sends the response to
the address contained in the next Via.

SIP/2.0 200 OK

Via: SIP/2.0/UDP workstation1000.university.com:5060

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>;tag=314159

Call-ID: 12345678@workstation1000.university.com

CSeq: 1 INVITE

Contact: Bob Johnson <sip:Bob@131.160.1.112>

Content-Type: application/sdp

Content-Length: 154

v=0

o=Bob 2891234321 2891234321 IN IP4 131.160.1.112

s=Let us talk for a while

c=IN IP4 131.160.1.112

t=0 0

m=audio 41000 RTP/AVP 0

ACK from Laura to Bob When Laura’s UA receives the 200 OK final
response, it sends an ACK request. This ACK is sent directly to Bob’s UA,
whose address is contained in the Contact header just received.

ACK sip:Bob@131.160.1.112 SIP/2.0

Via: SIP/2.0/UDP workstation1000.university.com:5060

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>;tag=314159

Chapter 5156

Call-ID: 12345678@workstation1000.university.com

CSeq: 1 ACK

Contact: Laura Brown <sip:Laura@workstation1000.university.com>

BYE from Laura to Bob Now Laura is ready to finish the call so her
UA sends a BYE request. This BYE request is also sent directly to Bob’s
UA using the Contact header previously received. Note that the Cseq has
been increased. This BYE request belongs to a new transaction.

BYE sip:Bob@131.160.1.112 SIP/2.0

Via: SIP/2.0/UDP workstation1000.university.com:5060

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>;tag=314159

Call-ID: 12345678@workstation1000.university.com

CSeq: 2 BYE

Contact: Laura Brown <sip:Laura@workstation1000.university.com>

Final Response from Bob to Laura Bob’s UA receives the BYE
request, terminates the audio session, and returns a 200 OK response for
the BYE.

SIP/2.0 200 OK

Via: SIP/2.0/UDP workstation1000.university.com:5060

From: Laura Brown <sip:Laura.Brown@university.com>

To: Bob Johnson <sip:Bob.Johnson@company.com>;tag=314159

Call-ID: 12345678@workstation1000.university.com

CSeq: 2 BYE

Contact: Bob Johnson <sip:Bob@131.160.1.112>

The example above shows how all the headers that were explained
previously in this chapter work together to establish a voice session. We
can already see that SIP protocol opertion is pretty simple and easy to
understand.

157SIP: Protocol Operation

Extending SIP:
The SIP Toolkit

CHAPTER 66

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Session Initiation Protocol (SIP) is designed so that its core functionality is
present in every implementation. This provides interoperability on a global
scale. Every SIP implementation can capitalize on the fact that any other
SIP implementation will be able to understand all of the mechanisms
described in the SIP Request for Comments (RFC) [RFC 2543]. However,
some implementations need functionality beyond the core protocol, which
means that SIP needs to be enhanced somehow.

SIP is flexible and easy to extend. The community has defined a set of
extensions very quickly. Applications with special requirements devise
extensions to meet their particular needs. These extensions are imple-
mented in a modular fashion and their use can be negotiated during session
establishment, ensuring that a simple User Agent (UA), whose sole purpose
is to implement the core protocol, will always be able to interoperate with
more advanced UAs.

SIP extensions can be seen as the SIP toolkit. Every one of the exten-
sions resolves a concrete problem. In order to solve a big problem, such as
how to provide a new service, you can anticipate that it will be necessary to
combine the core specification with the suitable extensions.

This chapter, like Chapters 4 and 5, describes existing SIP extensions by
first explaining each one’s functionality and then outlining how each exten-
sion is implemented. Once the reader becomes familiar with the most com-
mon SIP extensions, we can devote the next chapter to the architectures
and applications that use the SIP toolkit (SIP and its extensions) for service
provisioning.

Extension Negotiation
A given SIP application can always assume that another SIP application is
able to understand the SIP core protocol. However, it cannot make any
assumptions about which extensions the remote end supports. Therefore, a
negotiation process is needed in order to determine the extensions that will
be used within any given session (Figure 6-1).

During this process, the SIP entities involved negotiate two things:
which extensions the remote party supports and which extensions will
actually be employed in the upcoming session. For instance, two very
advanced SIP UAs might support several extensions, but they will not nec-
essarily use any if the core protocol suffices for the type of session being

Chapter 6160

established at a particular moment. However, at any other moment, they
might decide to use a subset of all the extensions they support. SIP main-
tains a clear distinction at all times between the extensions that are under-
stood by both parties and those that will be used in a particular session.

How It’s Done

The process of negotiating the session’s extensions is conducted using two
headers: Require and Supported [draft-ietf-sip-serverfeatures].A client lists
all of the extensions it needs to establish a session in the Require header
and all of the extensions it supports in the Supported header. The server
decides which extensions will be used in the session based on these two
headers.

161Extending SIP: The SIP Toolkit

Extensions supported:

Extensions supported
by both systems

Extensions supported:

Figure 6-1
SIP entities negotiate
which extensions can
be used during a
session.

At the other end, the server lists the extensions that will be used in the
Require header and the extensions it understands in the Supported header.
This way, the server reciprocates the client’s information about which
extensions it supports.

In Figure 6-2, Bob’s UA supports extensions foo1, foo2, foo3, and foo4.
Bob wants to use extension foo1 in the session, so he adds it to the Require
header of his INVITE. Laura wants to use extension foo2 as well. She
knows that Bob’s UA supports it because it appears in the Supported
header of the INVITE. Therefore, she adds foo2 to the Require header.
Besides that, she tells Bob’s UA that her UA also supports foo4 and foo5.
Now the Require header in the 200 OK from Laura contains the extensions
that will actually be used through the session.The information contained in
the Supported header might prove useful later if Bob decides mid-session to
use the extension foo4 as well; he is forearmed with the knowledge that it’s
available and can make a user’s decision to expand his session capabilities.
The extensions foo3 and foo5 will not be used in the session because they
are only understood by one of the end systems.

Design Principles for SIP
Extensions
Effective design for new SIP extensions must follow certain rules.
Some design principles for SIP extensions have been defined [draft-ietf-sip-
guidelines] to ensure that new extensions do not change the spirit of SIP.

Chapter 6162

Bob Laura
(1) INVITE

Require: foo1
Supported: foo2, foo3, foo4

(2) 200 OK
Require: foo1, foo2

Supported: foo4, foo5

(3) ACK

Figure 6-2
Extension negotiation
between Bob and
Laura.

New proposed extensions in the form of Internet drafts are carefully ana-
lyzed in the SIP working group before they are accepted as standard SIP
extensions. For those readers who will be designing extensions, let’s enu-
merate the characteristics that an extension will have to exhibit in order to
be accepted by the SIP community.

Do Not Break the Toolkit Approach

One of the great advantages of SIP is that it fits into the multimedia con-
ferencing architecture of the Internet. SIP is part of the Internet Engineer-
ing Task Force (IETF) toolkit for multimedia. It does what it was designed
to do and makes use of other protocols for other tasks (such as Session
Description Protocol (SDP) for session description). Extensions to SIP
should not broaden the scope of SIP so that SIP is used for tasks that are
handled better by other Internet protocols, even if, at the moment, it
appears SIP would do the job.

For example, one might want to use SIP to download Web pages from a
server. HTTP already exists for that purpose. Therefore, it would not be
wise to create SIP extensions to try to cover HTTP functionality. SIP should
be used to locate a particular SIP entity and deliver an object (such as a ses-
sion description), possibly followed by a negotiation. SIP should be used for
applications that leverage the user mobility, object delivery, and negotiation
provided by SIP. All other applications fall outside of the scope of SIP. If we
tried to use SIP to resolve every problem it might solve, the protocol would
quickly become huge and complex, which is the opposite of the IETF phi-
losophy that created it in all its elegance. The IETF standardization process
ensures that SIP is kept simple and manageable.

Peer-to-Peer Relationship

SIP entities usually have a peer-to-peer relationship. When a server
receives a request from a client, it performs some tasks and then returns a
response with the result of the request. The client does not continuously
send orders to the server telling it how to proceed. Thus, SIP is not really
effective in a master/slave architecture where the master has a lot of con-
trol over the slave.

SIP extensions should not be used to provide such control functionality,
which is already provided by more suitable protocols such as H.248

163Extending SIP: The SIP Toolkit

[RFC3015]. The peer-to-peer relationship between SIP entities, conversely,
makes the protocol highly suitable for inter-domain communications.
Master/slave protocols have been proven ineffective for inter-domain com-
munications, where domain owners typically want to prevent the owner of
a different domain from controlling their resources.

Independence from Session Type

SIP separates session establishment from session description. This separa-
tion has to be maintained whenever extensions are added to the core pro-
tocol in order to ensure that extensions will be future-proof (that is, in SIP’s
case, capable of handling any type of session). For example, a new extension
should define how SIP interacts with generic Quality of Service (QoS) mech-
anisms, but should not define how SIP can be used in conjunction with SDP
and ReSerVation Protocol (RSVP) in order to provide QoS. That’s not to say
that the latter wouldn’t be useful in some cases, but in every case, the
generic mechanism would be defined as a SIP extension and the concrete
application of the generic mechanism to SDP and RSVP would be described
in an informational document only.

It’s important to keep this in mind because although SIP can be used to
establish all types of sessions, SIP development to date has been quite
focused on Voice over IP (VoIP) applications. This kind of focus is not
unusual in developing protocols, but we have to guard against the natural
tendency to design extensions that will be applicable only in a VoIP context.
Presently, SIP extensions are general enough to cover different types of ses-
sions, even if their current use is a VoIP service.

Do Not Change Method Semantics

The purpose of a SIP request is defined by its method (for example, a BYE
request is intended to terminate a session). Thus, it is possible to know the
purpose of a request at first glance by inspecting its method. Headers and
parameters give more information about the request, but the general pur-
pose of the request is not changed by the contents of any header.

This design rule remains when new SIP extensions are planned. Let us
look at an example of an extension that would not be accepted by the IETF.
The following extension breaks the rule of identifying the purpose of a
request by its method and therefore would be a bad idea.

Chapter 6164

One might define a header called Real-Purpose to be carried in INVITE
requests as follows:

Real-Purpose: Tell me your capabilities

An INVITE with this header would be used to query a remote system
about its capabilities rather than to establish a session.

However, the purpose of INVITE is not to query about capabilities. If a
system wants to query about capabilities, it should use the OPTIONS
method, which is defined specifically for that purpose.

Therefore, whenever a request with a new functionality is needed, the
SIP community creates a new method. They do not try to change the
semantics of an existing one.

Extensions to SIP
We have already seen which common characteristics can be expected from
every SIP extension. In this section, we will analyze some SIP extensions
that have been proposed. We will describe the functionality provided by the
extension and outline how it is implemented, and will try to keep these two
concepts as separate as possible so the reader can readily distinguish them.

The SIP Toolkit

The core protocol taken together with its extensions can be seen as a toolkit
for creating services. In order to design a new application or create a new
service, the designer picks the extensions needed and combines them. Thus,
extensions are sufficiently general mechanisms that can be used in a vari-
ety of different services. We’ll follow the same bottom-up approach to
describe SIP extensions, postponing a discussion of specific applications and
architecture that have been implemented using different extensions until
the next chapter.

Reliable Delivery of Provisional Responses

Core SIP ensures that the initiator of a session is informed when
the remote party agrees to join the session. Short of actual acceptance,

165Extending SIP: The SIP Toolkit

though, reports on the progress of session establishment are not considered
valuable.

However, some applications need this type of information. For example,
suppose the support department of a company implements a queue for
incoming calls. When all of the clerks are busy, calls from customers are
placed in the call queue. As the next clerk becomes available, he or she
answers the first call in the queue.

Customers calling this service will insist on being informed about their
progress in the queue. They can be informed either by displaying a message
on the screen of the caller’s SIP phone (such as “You are now the second in
the queue”) or by playing a voice message for the caller. The relevant exten-
sion for providing this service is the reliable delivery of provisional
responses.

How It’s Done Information about how session establishment is pro-
gressing is carried in provisional responses for an INVITE request. The pro-
visional response 180 Ringing from the callee to the caller indicates that
the callee is being alerted. The provisional response 182 Queued indicates
that the call has been placed in a queue.

SIP does not transmit provisional responses reliably. When a User Agent
Server (UAS) returns a provisional response to the User Agent Client
(UAC), it traverses the same proxies as the INVITE did but in the opposite
direction. Even if proxies in the path forward this provisional response to
the UAC, because UASs do not retransmit provisional responses, any router
in the network may discard the IP datagram containing the SIP response.
So, it might come about that the UAC never receives the provisional
response (Figure 6-3).

[Draft-ietf-sip-100rel] is the SIP extension defined to provide the reliable
transfer of provisional responses. UASs transmitting reliable provisional
responses retransmit until a message from the UAC is received acknowl-
edging reception. This mechanism is similar to the one used by core SIP for
200 OK responses, which are retransmitted by the UAS until the ACK is
received.

A new method was defined to acknowledge the reception of provisional
responses. This new method is called Provisional Response ACK (PRACK).
A UAS stops retransmitting a provisional response upon reception of a
PRACK from the UAC.

The PRACK request belongs to a different transaction than the INVITE
request. Thus, the UAS also must send a response to the PRACK. In Figure
6-4, the UAS sends a 200 OK response to the PRACK, indicating that the
PRACK request succeeded.

Chapter 6166

167Extending SIP: The SIP Toolkit

Bob Laura

(1) INVITE

(3) 200 OK

(2) 180 Ringing

(4) ACK

Conversation

Figure 6-3
Provisional responses
might get lost.

Bob Laura

(1) INVITE

(3) 180 Ringing

(5) 200 OK

(4) PRACK

(6) 200 OK

(7) ACK

Conversation

(2) 180 Ringing

Figure 6-4
The PRACK ensures
that the provisional
response is
transmitted reliably.

Figure 6-5 contains the example that was previously described. A cus-
tomer is informed about his position in the call queue through reliable pro-
visional responses. His SIP UA displays his new position on the screen
every time a new response arrives.

PRACK is an example of the SIP working group that chooses a general
solution over a more efficient but less general one. This decision is in line
with the IETF paradigm and the toolkit approach. The 200 OK response for
the PRACK is really useless from a reliability point of view.The UAC knows
that the PRACK has arrived at the UAS because the retransmissions of the
provisional response stopped. So why is the 200 OK for the PRACK sent?

The answer to this question is one of the key features of the Internet:
end-to-end protocols perform end-to-end functions better. SIP proxies
understand the basic SIP methods. We saw in Chapter 5 that a proxy
receiving a method that it does not understand routes it by following the
same rules as for BYE requests. The proxy basically forwards the request
and if it is stateful, waits for a final answer.

Chapter 6168

Bob Support

(1) INVITE

(3) PRACK

(5) 182 One In The Queue

(2) 182 Two In The Queue

(4) 200 OK

(7) 200 OK

(6) PRACK

(11) 200 OK
(12) ACK

(8) 180 Ringing

(10) 200 OK
(9) PRACK

Figure 6-5
Call queue
implemented using
reliable provisional
responses.

Making PRACK into a request-response transaction enables proxy
servers that are not PRACK aware to route this new method properly. If
PRACKs had no response, proxies would have to learn a new method in
order to apply special routing that doesn’t wait for a response.

This example shows how a new service can be implemented without
modifying anything in the network. Two terminals that implement the
PRACK method are able to exchange reliable provisional responses over
the same network of SIP servers that was implemented when PRACKs did
not exist. Those SIP servers will not understand PRACK because it was
developed when they were already installed in the network, but they can
still route PRACKs properly. Therefore, end systems can implement new
services and use them over an existing SIP network without requiring an
upgrade. This is one of the reasons why the pace at which services are cre-
ated for SIP is much faster than for networks other than the Internet.

Mid-session Transactions That Do Not
Change the State of the Session

We have already seen several examples of how SIP is used to establish ses-
sions. Once a session is established, the core SIP specification provides a
means to change the parameters of the sessions through re-INVITEs and a
means to terminate the session through a BYE. Certainly, in some situa-
tions, the parties involved in a session may need to exchange information
that does not influence the state of the session in any way. However, core
SIP does not provide a means of sending information to the remote party
without changing session state. In this case, the means proves to be an
extension for mid-session information. Exchange of this kind of information
can be typically found when SIP interworks with other signalling protocols.
One such case is billing information, where the session provider regularly
needs to transfer information related to the session that does not modify its
parameters. SIP can carry it only by means of extension.

How It’s Done A new SIP method called INFO was defined [RFC 2976]
to provide this functionality. INFO transports mid-session information that
does not affect state. INFOs typically carry information in the message
body that is transferred from end to end between UAs. Figure 6-6 illus-
trates Bob and Laura exchanging INFOs during an ongoing session.

169Extending SIP: The SIP Toolkit

Multiple Message Bodies

You already know that SIP can locate a user and deliver a session descrip-
tion to the user at his or her current location. However, sometimes it’s
important to deliver more than a session description. For instance, Bob has
a SIP UA in his laptop. When Bob receives a call, apart from receiving the
session description that will enable him to establish the session, he finds it
useful to see who is calling. SIP can deliver, at session initiation, the caller’s
photo along with the session description, which will be displayed on Bob’s
laptop. Bob now has the option of accepting or refusing the call based on the
identity of the caller.

How It’s Done In order to be able to display the photo of the caller, Bob’s
UA needs to receive a file with the photo (such as Laura.jpg) or a URL
where Bob’s UA can retrieve the photo (such as http://www.university.com/
�laura/photos/laura.jpg). If a URL is received, Bob’s UA uses his Web
browser to display the photo. In order to receive this information, whether
it turns out to be a file or a URL, Bob’s UA needs to receive an INVITE car-
rying a message body with two parts: an SDP session description and a
photo (Figure 6-7).

Chapter 6170

Bob Laura

(1) INVITE

(3) ACK

(2) 200 OK

(8) BYE
(9) 200 OK

(6) INFO
(7) 200 OK

(4) INFO
(5) 200 OK

Figure 6-6
INFOs do not change
the state of the
session.

Core SIP accepts multipart message bodies in Multipurpose Internet
Mail Extensions (MIME) [RFC 2045] format. SIP does not need to be
extended in order to support them. Again, SIP uses the same format to send
multipart bodies that e-mail systems use to send attachments. This shows
the toolkit approach at work so that new services can be built on existing
mechanisms.

Instant Messages

To establish a session, SIP delivers a session description to the caller. If
instead of a session description, SIP is used to deliver a human-readable
message, an instant-messaging system can be trivially implemented with
SIP. The main difference between instant messages and e-mail is that
instant messages are short and are delivered immediately to the user. E-
mails are usually longer and they are stored in the user’s inbox until he or
she accesses it to read them. It is also common to maintain interactive text
conversations using instant messages, but much less so with e-mail where
responses aren’t always sent within a short period of time.

Many applications use instant messages. For example, several network
games let players send short messages to their opponents while play is in
progress. Instant messages can also be used in combination with voice. Say
Bob is on the phone with Laura trying to explain the correct spelling of a
word to her. A short message is much faster than speaking all the letters of
the word one by one. SIP with some extensions can provide simple instant-
messaging services.

How It’s Done A new method called MESSAGE was defined [draft-
rosenberg-impp-im] to carry in its body the message that the sender wrote.
The big advantage of using SIP for delivering instant messages is that prox-

171Extending SIP: The SIP Toolkit

BobLaura
(1) INVITE

SDP
Laura’s photo

(2) 200 OK

(3) ACK

Figure 6-7
Bob receives Laura’s
photo in her INVITE.

ies route a MESSAGE request as a BYE request. Therefore, the same infra-
structure deployed for establishing multimedia sessions can be reused for
providing instant-messaging services without any modifications. Proxies do
not need to be aware of this new service in order to route MESSAGE
requests.

Figure 6-8 shows Bob and Laura in the midst of a conversation. They
establish a SIP session using an INVITE and begin talking. While they’re
discussing vacation plans, Bob needs to explain to Laura how to spell a
word. He sends her an instant message and then they resume conversing
by voice.

Automatic Configuration of UAs

One of the main features of SIP is that it provides user mobility through
registrations. UAs register their current location to SIP servers so that
these servers can route INVITE requests correctly. It is essential for a SIP
UA to know which server is handling a particular domain in order to regis-
ter with that SIP server.

The more mobile the user, the more difficult is for him or her to remem-
ber all of the data needed to configure his or her SIP UAs to work in each
different domain where the user can be reached.

Chapter 6172

(5) 200 OK

Bob Laura

(1) INVITE

(3) ACK

(2) 200 OK

(4) MESSAGE

"Costa del Sol"

How do you spell the
name of the place we are

going on vacation?

Figure 6-8
Bob sends a short
message to Laura in
the middle of a voice
session.

Bob, for example, has a SIP UA in his laptop for making VoIP calls. When
he is working in his office, he tends to use the SIP server at company.com.
He knows the name of the domain, company.com, so he configures his SIP
UA in order to send REGISTERs to that SIP server.

Bob usually works in the university in the afternoon. When he gets
there, he’ll have to change the configuration of his SIP UA. He sends the
REGISTERs to the proxy at university.com, and also configures this proxy
as the outbound proxy. All requests from his UA will be sent first to this
proxy because the university has a firewall that will only admit SIP mes-
sages have traversed the proxy at university.com.This security proxy works
much like the HTTP proxy used by many companies to access the Internet.

Bob is accustomed to working in both the university.com and
company.com domains, so he knows the configuration data by heart. How-
ever, in any other domain, he probably has no idea about how to configure
his UA.

This week Bob is visiting another university where he is collaborating
with a colleague. When Bob connects his laptop to the Internet, he does not
know his current domain name or his outbound proxy. He will most likely
have to hunt down the network administrator of the university and ask for
this information in person.

Mechanisms are available for SIP server discovery that can make Bob’s
life easier when he is traveling around trying to use his SIP UA. With these
mechanisms, Bob would not need to bother configuring his SIP UA. Just as
an IP address is automatically assigned to his laptop when he connects to
the Internet, the parameters needed to configure his SIP UA can be auto-
matically delivered to his laptop.

How It’s Done This configuration process can be made automatic
through a couple of ways. They are actually extensions to protocols other
than SIP, but we consider them important enough for SIP applications to
mention them.

One option is to use Dynamic Host Configuration Protocol (DHCP) [RFC
2131] to retrieve the domain name of the SIP server. In the same way a lap-
top uses DHCP to retrieve its IP address from a DHCP server, a SIP UA can
also retrieve the domain name of a SIP server using DHCP [draft-ietf-sip-
dhcp]. Figure 6-9 shows how Bob retrieves both his IP address and his SIP
domain name from a DHCP server.

A more advanced UA can use the Service Location Protocol (SLP) [RFC
2608] to find a SIP server with certain characteristics. SLP provides server
location that matches up server capabilities with user needs [draft-kempf-
sip-findsrv].

173Extending SIP: The SIP Toolkit

Preconditions to Be Fulfilled Before Alerting

In all the examples we have seen so far, UAS has alerted the user upon
reception of an INVITE. If the user accepted the invitation, the session was
established. This model works just fine for sessions that can be established
quickly. In an audio session, for instance, once the user accepts the call, he
or she can hear the caller’s voice almost immediately. The model also works
for sessions whose requirements for establishing time are not especially
tough. For instance, if a user receives an invitation (INVITE) to join a gam-
ing session, he or she does not expect to be able to begin playing as soon as
he or she presses the accept button. The user expects (and counts on) some
time to elapse between accepting and to joining the game. The application,
among other tasks, will probably have to load some game scenarios into
memory and synchronize positions on each player’s map of different players
before the game can start.

The model is unsuitable for sessions that have tougher requirements,
however. A good example is a telephone call placed over the public-switched
telephone network (PSTN). When I receive a call on my PSTN phone, I
expect to speak as soon as I pick up. It would be annoying and probably
unacceptable if I had to wait so much as 5 seconds between answering the
phone and talking.

Chapter 6174

(1) I am a new laptop in the network.
I have just been connected

DHCP server

(2) Your IP address is: 131.160.1.112
Your SIP domain name is: university.com

Figure 6-9
Bob´s laptop obtains
an IP address and a
SIP domain name
from the DHCP
server.

In the Internet, establishment time increases dramatically if the session
requires a certain QoS and/or a certain level of security. Establishing a
secure channel between two end users and providing QoS (using RSVP for
instance) takes time.

But even if an extremely fast resource reservation mechanism that could
fulfill a variety of applications requirements was available, it would still be
impossible to know beforehand whether the network will grant the neces-
sary session QoS or not. If the session is established and the network does
not grant the necessary QoS, the session fails. In an audio session, this
would mean that a user answers a SIP phone that is ringing and finds no
call established—a case of ghost ringing.

This problem can be resolved either by changing the user’s expectations
or meeting the requirements. In the early days of cellular telephony, it was
the former. Users of the fixed telephony network were accustomed to very
short delays between the moment they finished dialing a telephone number
and the first rings on the caller’s phone. Cellular users had to wait signifi-
cantly longer for their calls to be established. However, they were willing to
accept this delay in exchange for a new service feature: mobility. A typical
user of SIP devices might accept longer establishment delays because he or
she can trade off a little patience for a wide range of new services.

As we all know, sometimes it is necessary to simply fulfill the user’s
requirements. Users who only want voice sessions are most likely to refuse
to use a new technology (SIP) if it performs worse than the one they already
use.

For these occasions, the SIP toolkit includes a way to meet preconditions
for a session, such as security and QoS, before alerting the user. This mech-
anism ensures that everything is ready for establishing the session when
the user agrees to participate in it.

How It’s Done A new method called preCOnditions MET (COMET) was
defined [draft-ietf-sip-manyfolks-resource]. COMETs are sent to indicate
that all preconditions are met and session establishment can proceed. (See
Figure 6-10 for an example of how to use this method.)

Bob wants to establish a session with Laura that requires QoS. The
INVITE he sends her will contain QoS preconditions. Bob specifies that he
does not want Laura to be alerted until the network has granted a certain
QoS. If this QoS can’t be provided, Bob would rather let the session lapse.
So Laura’s UA receives the INVITE and sends back a “183 Session

175Extending SIP: The SIP Toolkit

Chapter 6176

(5) COMET

(6) 200 OK

(7) 180 Ringing

Bob Laura

(1) INVITE
QoS preconditions

(3) PRACK

(4) 200 OK

(2) 183 Session Progress

B
ob

 p
er

fo
rm

s
Q

oS
 r

es
er

va
tio

ns

La
ur

a
pe

rf
or

m
s

Q
oS

 r
es

er
va

tio
ns

Figure 6-10
Bob finishes
reserving QoS
before Laura.

Progress” response with Laura’s QoS preconditions for the session (this
response is transmitted reliably using the techniques described previously
in this chapter). Then Bob and Laura perform resource reservation (using
RSVP for instance). Bob waits until he finishes reserving resources to send
a COMET to Laura. When Laura’s UA has also completed resource reser-
vation, it resumes the session establishment process by alerting Laura.

Figure 6-11 illustrates what happens if Laura’s UA finishes resource
reservation ahead of Bob’s. Laura’s UA waits until a COMET arrives from
Bob. Once the COMET is received, it alerts Laura.

Caller Preferences

We have seen SIP servers handle requests in many different ways. A SIP
server, for instance, can choose between performing parallel or sequential
searches, and between forking or trying a single location. The core SIP spec-
ification leaves these decisions up to the administrator who configures the
server.

The caller, however, might have different preferences. I might want all
my requests to be forked in parallel rather than sequentially to save time,
whereas someone else might want his or her requests to be forked sequen-
tially to save sanity. Most people will want their fixed phone rung first and,
if nobody answers, their mobile phone rung next. The concept of all my con-
tact devices being pinged at once is an attractive one, but the concept of
being pinged by all my contact devices at once is distinctly unpleasant.

Besides influencing how the caller’s requests are handled, a certain
caller might also be interested in defining which kind of terminal he or she
wants to reach. For instance, when Bob is calling Laura to talk about the
opera they saw last Saturday, he does not want to reach Laura at work. He
prefers to reach Laura at her private line. On the other hand, when Bob’s
boss calls him to talk about work-related matters, he does not want to reach
Bob at his personal SIP phone. When Bob wants to speak with Laura for a
long while, he does not want to reach her at her mobile SIP phone because
calling this phone is more expensive than calling her fixed SIP phone. Thus,
Bob wants his INVITEs to reach Laura’s fixed terminal rather than her
mobile one.

177Extending SIP: The SIP Toolkit

(5) COMET

(6) 200 OK

(7) 180 Ringing

Bob Laura

(1) INVITE
QoS preconditions

(3) PRACK

(4) 200 OK

(2) 183 Session Progress

B
ob

 p
er

fo
rm

s
Q

oS
 r

es
er

va
tio

ns

La
ur

a
pe

rf
or

m
s

Q
oS

 r
es

er
va

tio
ns

Figure 6-11
Laura finishes
reserving QoS
before Bob.

Knowing caller preferences is also useful for providing services. A user
calling the tax office might speak English rather haltingly. Therefore, he
wants his INVITE to reach a Spanish-speaking representative to help him
with his tax declaration.

Some extensions to SIP enable callers to describe how their requests
should be handled and which kind of SIP UA they would like to reach. How-
ever, note that the preferences of the caller have to interact with the con-
figuration of the server. Thus, if a server is configured to divert incoming
calls to a mobile and the caller states that he or she wants the INVITE to
reach a fixed terminal, a mismatch must be resolved. In this situation, the
caller would have to clarify in the request whether his or her preference for
fixed terminals can be overruled or whether he or she would not accept con-
nection to a mobile terminal at all.

How It’s Done In order to achieve this functionality, three new headers
and new Contact header parameters were defined [draft-ietf-sip-caller-
prefs]. The new headers are Accept-Contact, Reject-Contact, and Request-
Disposition. New parameters for Contact headers describe the user’s
terminal.

Figure 6-12 demonstrates the usage of these new headers and parame-
ters. Bob sends a REGISTER to his server stating that he is available at

Chapter 6178

Laura Proxy

Bob's
fixed

terminal

Bob's
mobile

terminal
(1) REGISTER

Contact: Bob@131.160.1.112;
mobility="fixed";

class="business"

(3) REGISTER
Contact: Bob.Johnson@mobile.com;

mobility="mobile";
class="personal"

(2) 200 OK

(4) 200 OK
(5) INVITE

Accept-Contact: *;mobility="fixed"
Reject-Contact: *;mobility="mobile"

Request-Disposition: no-fork

(6) INVITE
Accept-Contact: *;mobility="fixed"

Reject-Contact: *;mobility="mobile"
Request-Disposition: no-fork

Figure 6-12
Laura uses new SIP
headers to indicate
her preferences.

SIP:Bob@131.160.1.112 and specifying that this is a fixed terminal used for
business. Therefore, the Contact header of his REGISTER looks like the
following:

Contact: sip:Bob@131.160.1.112; mobility="fixed"; class= "business"

Bob sends a second REGISTER saying that he is also available at
SIP:Bob.Johnson@mobile.com. He specifies that this is a mobile terminal
used for personal matters. The Contact header of this REGISTER looks like
the following:

Contact: sip:Bob.Johnson@mobile.com; mobility="mobile"; class=
"personal"

Now Laura wants to call Bob. She sends an INVITE containing her pref-
erences. Today she has to reach Bob on a fixed terminal and does not want
under any circumstances to reach Bob on his mobile. To express these pref-
erences, Laura uses the Accept-Contact and Reject-Contact headers.

Accept-Contact: * ; mobility="fixed

Reject-Contact: * ; mobility="mobile"

The * is a wild card. These headers together mean that Laura agrees to
reach any fixed address while she refuses any mobile address. Laura also
adds a Request-Disposition header to her INVITE to prevent her INVITE
from forking:

Request-Disposition: no-fork

Asynchronous Notification of Events

In the examples discussed so far, SIP signalling has been triggered by an
action performed directly by a person wishing to establish, modify, or ter-
minate a particular session. Bob triggers SIP signalling (an INVITE) when
he picks up his SIP phone to call Laura and also when he hangs up (a BYE).
However, other events besides establishing, modifying, or terminating a ses-
sion can trigger SIP signalling. The SIP event notification framework
enables SIP to inform users about a variety of events in which they’ve pre-
viously indicated an interest via signalling. This event notification mecha-
nism is a powerful tool for building services. Say Bob calls Laura and she is

179Extending SIP: The SIP Toolkit

busy. Even if he’s in a hurry, he does not want to keep trying her number
every minute to determine when she becomes available. Instead, he wants
news of her availability to be delivered to him.

Another example where an event notification mechanism is useful is the
implementation of a presence service. A presence service usually consists of
a list of your friends and colleagues and their current availability to com-
municate with you. Bob can see in his buddy list whether Laura is willing
to receive telephone calls at a certain moment or whether she just wants
instant messages.

SIP can also be used to build this presence service. Every time Laura’s
status changes, Bob is notified. This way Bob’s buddy list will reflect
changes in Laura’s status.

How It’s Done Two new methods were defined to provide asynchronous
event notification: SUBSCRIBE and NOTIFY [draft-ietf-sip-events].
SUBSCRIBE is used by a SIP entity to declare its interest in a particular
event. A SIP entity subscribes to a certain event of a class of events. When
the subscribed event occurs, NOTIFY requests are sent containing infor-
mation about the session.

Figure 6-13 shows how the automatic recall service previously described
can be implemented using SUBSCRIBE and NOTIFY. Bob calls Laura, but
she is busy. Bob sends a SUBSCRIBE to Laura’s SIP UA indicating his
interest in Laura’s status. Laura’s SIP UA answers with a 200 OK to the
SUBSCRIBE and sends a NOTIFY to Bob with Laura’s current status:
busy. After a while, Laura hangs up and her UA detects a change in her sta-
tus and sends a NOTIFY to Bob with her new status: available. Bob will
then send an INVITE to Laura to talk to her. This time his call will be suc-
cessful.

Figure 6-14 shows another example of a service implemented using
SUBSCRIBE and NOTIFY. Bob is participating in a SIP conference call
that uses a centralized conference unit. All of the participants send an
INVITE to the conference unit to establish a session with it. The conference
unit then combines all incoming audio streams and delivers them to the
participants.

Bob wants to know how many people are attending the conference at any
moment. He sends a SUBSCRIBE to the conference unit. The conference
unit keeps Bob updated about changes in the number of participants by
sending a NOTIFY every time a participant joins or leaves the conference.

Chapter 6180

181Extending SIP: The SIP Toolkit

(9) 200 OK

(8) NOTIFY
Laura is available

(7) 200 OK

(6) NOTIFY
Laura is busy

(5) 200 OK

(4) SUBSCRIBE
Laura's status

(10) INVITE

Bob Laura

(2) 484 Busy here

(3) ACK

(1) INVITE

Figure 6-13
Bob is notified when
Laura hangs up.

When Laura joins the conference, Bob receives a NOTIFY with the new
number of participants.

Third-party Call Control

We know a SIP UA can establish a session with other UAs. However, a
user sometimes wants to establish a session between other UAs without
taking part on it. This situation is quite common when one of the UAs rep-
resents a machine instead of a human. If a conference call is scheduled
using a conference unit like the one described in the previous section, invi-
tees can opt out without losing out. Bob is interested in what is said dur-
ing the conference call, but he is busy at that particular time and can’t
attend. Bob thinks that recording the conference would be a good idea.

However, Bob only has his SIP mobile phone with him, and it has very
limited storage capacity. He’ll need to establish a session between the con-
ference unit and his home PC. To resolve his problem, Bob resorts to third-
party call control, which enables a SIP entity to manage sessions between
other parties. A controller that establishes a session between two partici-
pants will be involved in the SIP signalling, but not necessarily in the ses-
sion media. In our example (Figure 6-15), Bob becomes the controller and
establishes an audio session between the conference unit and his home
desktop.

How It’s Done Third-party call control [draft-rosenberg-sip-3pcc] does
not require any extension to the core SIP specification. The controller
invites the participants and then exchanges the session descriptions
between them. Figure 6-16 shows how this example is implemented. Bob
sends an INVITE without any session description. Because Bob’s computer
receives an empty INVITE, it expects that the session description will be
sent in the ACK instead. Bob’s computer follows normal SIP procedures and
returns a session description in a 200 OK response to Bob who then uses

Chapter 6182

Bob Laura
Conference

Unit

(2) 200 OK
(3) ACK

(4) SUBSCRIBE
Number of participants

(7) 200 OK

(8) INVITE

(9) 200 OK

(10) ACK

(6) NOTIFY
There are currently 6 participants

(1) INVITE

(11) NOTIFY
There are currently 7 participants

(12) 200 OK

(5) 200 OK

Figure 6-14
Bob receives a
NOTIFY when
Laura joins the
conference call.

183Extending SIP: The SIP Toolkit

Bob’s
computer

Conference
unit

Bob

Media session between
his computer and the

conference unit

SIP signalling between Bob
and his computer at home

SIP signalling between Bob
and the conference unit

Figure 6-15
Bob establishes a
session between the
conference unit and
his computer at
home.

Bob’s
computerBob

Conference
Unit

(2) 200 OK
SDP computer

(4) 200 OK
SDP conference unit

(6) ACK
no SDP

(3)INVITE
SDP computer

(1) INVITE
no SDP

(5) ACK
SDP conference unit

Figure 6-16
Third-party
call control
message flow.

this session description to INVITE the conference unit. Because this sec-
ond INVITE contains the session description provided by Bob’s computer,
the conference unit will send the audio stream to Bob’s computer. It
responds with a 200 OK. Bob receives the session description of the con-
ference unit in this 200 OK and sends it to his computer in an ACK. Now
the media stream flows directly between the conference unit and Bob’s com-
puter while SIP signalling traverses Bob’s SIP mobile.

The most important feature of this message flow is that it uses nothing
but core SIP. Therefore, simple UAs with minimum SIP support can be con-
trolled by a SIP controller.

Session Transfer

We have seen that third-party call control enables a SIP entity to be in con-
trol of session signalling while the media is exchanged between other enti-
ties. In some situations, the controller won’t want to continue monitoring
(controlling) the signalling of the session. Instead, he or she will want the
other entities to continue the session independently. At this point, the con-
troller needs a mechanism to transfer SIP sessions to another entity.

The most common example of session transfer occurs when I make a
phone call and it’s answered by the callee’s secretary. I tell her the purpose
of my call and whom I want to contact. Then the secretary transfers my call
to the covering person or voice mailbox. This is an example of session trans-
fer because once the transfer has succeeded, the secretary immediately
stops receiving any signalling or media related to that session.

A SIP extension provides session transfer functionality. In our example,
it enables the secretary to transfer the call. Furthermore, it enables her to
check whether the transfer was successful or not. In case the transfer has
failed, the secretary can regain control of the call for a second attempt.

For example, Laura calls Bob’s SIP Universal Resource Locator (URL),
but his secretary picks up the phone. In order to transfer the call,
she instructs Laura’s UA to INVITE Bob at his current location. Laura’s
UA INVITEs Bob using the new URL provided and terminates the previous
session.

Note that if Laura did not terminate the first call at this juncture, they
could have easily established a three-party conference using the same
mechanism.

How It’s Done To provide session transfer functionality, a new method
was defined: REFER [draft-ietf-sip-cc-transfer]. The idea behind this
mechanism is that one SIP entity instructs another to perform a certain
action. Namely, the REFER method instructs a server to send a specific
request to a certain URL. Figure 6-17 illustrates the REFER mechanism.
Laura calls Bob at his office and gets his secretary instead. Laura explains
that she wants to speak to Bob. The secretary puts Laura on hold by send-
ing a re-INVITE with a session description indicating call hold. Then she

Chapter 6184

sends a REFER to Laura instructing her to send a new INVITE to Bob’s
current location. The Refer-To header of the request contains the URL
where Laura has to send her new INVITE. The Referred-By header con-
tains the secretary’s SIP URL. Laura copies the Requested-By header into
her new INVITE and sends it to the SIP URL contained in the Request-
To header. When Bob receives this INVITE, he knows it is the result of a
transfer made by his secretary because the Referred-By header contains
her SIP URL.

185Extending SIP: The SIP Toolkit

Bob's
secretaryLaura Bob

(2) 200 OK

(1) INVITE

(10) 200 OK

(3) ACK

(4) INVITE (hold)

(6) ACK

(13) 200 OK

(14) BYE

(7) REFER
Refer-To: SIP: Bob.Johnson@company.com
Referred-By: SIP: Secretary@company.com

(5) 200 OK

(9) INVITE
Referred-By: SIP: Secretary@company.com

(8) 202 Accepted

(12) NOTIFY

(15) 200 OK

Please hold
while I transfer

your call.

Conversation

Conversation

(11) ACK

Figure 6-17
Bob’s secretary
transfers the call
to Bob.

When the INVITE transaction is completed, Laura sends a NOTIFY
indicating the result of the transfer. In our example, the transfer ended suc-
cessfully, so Bob’s secretary sends a BYE to terminate her call with Laura.
If the transfer had failed, Bob’s secretary would have been able to retrieve
her session with Laura to continue speaking with her. After the BYE, Bob
and Laura are in a closed two-party session with both signalling and media
traffic exchanged directly between them.

Sending Commands

Because SIP doesn’t function as a master/slave protocol, it’s not suitable for
controlling tightly coupled devices. In such scenarios, the master sends com-
mands to the slave who responds with the current status of the command.
The master controls how the slave is proceeding with each command at
every moment. Protocols such as H.248 or MGCP [RFC 2705] are appropri-
ate to resolve these problems because they were designed with tightly cou-
pled devices in mind.

However, sometimes it is necessary to send a command to a device out-
side a master/slave architecture. When both the entity issuing the com-
mand and the entity receiving it are loosely coupled, SIP becomes an
interesting alternative to master/slave protocols. In such an environment,
when one entity sends a command to another entity, the latter does what it
is requested to do and then reports the status of the command. Note that
the entity issuing the command does not behave as a master because it can-
not control the process from moment to moment and has to await the final
result of the command.

How It’s Done A new SIP method called DO [draft-moyer-sip-appli-
ances-framework] was defined to carry commands. An entity issues a DO
method carrying a command in the message body. The entity receiving the
DO performs the action the message has specified. Besides the DO method,
a format to describe commands, the Device Messaging Protocol (DMP), was
defined. DMP describes commands the same way as SDP describes ses-
sions.

With these two extensions, it is possible to control SIP-enabled entities,
and Bob can control his SIP-enabled radio from his laptop. Figure 6-18
shows how Bob’s SIP UA adjusts the volume using DO. In this way, the UA
can automatically mute the radio every time Bob receives a call and resume
the music once the call is over via another DO.

Chapter 6186

SIP Security

The IETF community considers security a critical aspect of any protocol
because the IETF designs protocols for use in the Internet, which is consid-
ered a hostile environment. Internet users protect their transmissions in
many ways against potential attackers. SIP users are no exception. It is
important, however, not to confuse SIP security with the security of a SIP-
enabled session. SIP security is concerned with the exchange of SIP sig-
nalling. Hence, Bob can send an encrypted INVITE to Laura so that nobody
knows which kind of session they are establishing, but once the session is
established, if they transmit unencrypted RTP packets, an eavesdropper
will be able to hear the whole conversation.

SDP, for instance, can carry cryptographic keys for encrypting media ses-
sions. SIP users can exchange keys during session establishment and then
use them to exchange media in a secure way. The remainder of this section
focuses on SIP security (authentication, message integrity, and confiden-
tiality) rather than on media security.

How It’s Done A major aspect of security is authentication. When Laura
receives a SIP request from somebody claiming to be Bob, she wants to be
sure that Bob is really the one sending the request. She needs a mechanism
to check the identity of any caller.

187Extending SIP: The SIP Toolkit

Bob's radioLaura Bob

(8) DO
set volume to 3/10

(3) 200 OK

(9) 200 OK

(1) INVITE

(4) 200 OK

(7) 200 OK

(5) ACK

(6) BYE

Conversation

(2) DO
mute

Figure 6-18
Bob controls his radio
using SIP.

Because SIP is based on HTTP, it can borrow HTTP authentication
mechanisms used in the Web for message authentication based on user IDs
and passwords. When somebody tries to view a restricted-access Web page,
HTTP has to determine who the user is before it can decide whether to give
him or her access. In SIP, these mechanisms are used to accept or reject a
session invitation. Let’s briefly analyze two different authentication
schemes: basic and digest. In both schemes, a server challenges the client
with a 400-class response that asks for the appropriate credentials. The
client responds with a new request containing what the server required.
Challenges are carried in the WWW-authenticate SIP header and creden-
tials are carried in the Authorization header (Figure 6-19).

In the basic authentication scheme, the client provides a user ID and a
password as credentials. This mechanism has an important limitation: both
user ID and password are sent in clear text. Thus, any eavesdropper can
readily obtain them just by sniffing the network.

The digest authentication scheme overcomes that limitation. It is also
based on user IDs and passwords, with the difference that they are never
sent through the network. The server challenges the client sending a nonce
value. Then the client calculates a checksum of the nonce value, the
Request-URI, the SIP method, the user, ID and the password and sends it
to the server. The server can thereby confirm that the client knows the user
ID and password without ever exposing them.

Chapter 6188

LauraBob

(1) INVITE

(3) ACK

(2) 401 Unauthorized
WWW—authenticate: (challenge)

(4) INVITE
Authorization: (Credentials)

(5) 200 OK

(6) ACK

Conversation

Figure 6-19
Example of HTTP
authentication
mechanisms
used in SIP.

These two mechanisms provide a level of authentication, but are not
enough for applications that require strong authentication. The basic and
digest schemes have serious limitations. A malicious proxy in the middle of
the SIP path could change the contents of the SIP message generated by
Bob and forward it to Laura. When Laura checks the Authorization header
of the message, she’ll believe that it’s from Bob. However, the proxy has
changed some parameters of Bob’s request so that even if Bob did generate
the original message, what Laura received is not really what Bob sent.

To overcome this weakness in the basic and digest authentication
schemes, it is necessary to provide message integrity together with authen-
tication. This is the only way a server can be sure that the SIP message
received was not modified by any entity in the network after being sent by
the client.

S/MIME Authentication and Message Integrity A general security mechanism
is usable with any transport mechanism that transports MIME [RFC 2045]
data. Known as Secure/Multipurpose Internet Mail Extensions (S/MIME)
[RFC 2633], it is generic enough to exchange secure e-mails and work with
both HTTP and SIP. S/MIME provides a format whereby the contents of a
message are signed, enabling the receiver to verify its integrity.

Messages are signed using a public-key encryption mechanism. An indi-
vidual user has two keys: the private key, which only the user knows, and
the public key, which is available to anyone. Something encrypted with a
private key can only be decrypted with a public key and vice versa.

In order to sign a message, the user calculates a digital signature by
using his or her private key and the contents of the message as input. Then
it adds the signature to the message. This way, if Bob signs a message using
his private key, Laura can check the integrity of the message and verify that
it comes from Bob. She uses Bob’s public key to check that the digital sig-
nature belongs to Bob, who is the only one who knows his private key.

S/MIME Confidentiality However, even if Laura can ascertain that Bob was
the sender and that the message was not modified in the network, any
eavesdropper can still see the contents of the SIP messages exchanged.
S/MIME provides an encrypted-only format to ensure that message con-
tents remain confidential. Bob encrypts the contents of his messages with
Laura’s public key. Because Laura is the only one who knows her private
key, Bob’s messages can only be decrypted by her. Both formats provided
by S/MIME, signed-only and encrypted-only format, can be combined to
provide authentication, message integrity, and confidentiality.

189Extending SIP: The SIP Toolkit

Chapter 6190

End-to-End and Hop-by-Hop Security We have seen that proxies need to
examine certain headers such as Request-URI, Via, To, From, Cseq, and
Call-ID in order to route requests and responses properly. Therefore, these
headers cannot be encrypted end to end. Instead, it is possible to use hop-
by-hop encryption. A secure channel can be established between a UA and
a proxy or between two proxies. Everything sent through this secure chan-
nel is encrypted. However, a UA using a secure channel towards a SIP proxy
cannot be sure that the latter will use another secure channel towards the
next hop. End-to-end and hop-by-hop security are complementary and
should be used together.

Note, however, that hop-by-hop security falls outside of the scope of SIP
because hop-by-hop encryption is typically done at lower layers using Inter-
net Protocol Security (IPSec) [RFC 1827] or Transport Layer Security (TLS)
[RFC 2246]. Secure channels established at a lower layer remain transpar-
ent to the application layer. End-to-end encryption of the message body is
essential because some session description protocols such as SDP carry
keys for encrypting the media. If the message body were not encrypted,
these keys would be exposed to any potential eavesdropper.

In this chapter we have gone through a set of SIP extensions. Let’s
analyze in the next chapter how these extensions are used by different
architectures.

Building
Applications
with the SIP

Toolkit

CHAPTER 77

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

We have just looked at several extensions to Session Initiation Protocol
(SIP) that enhance the protocol. Each extension provides a particular func-
tionality that might be useful under certain circumstances. In order to pro-
vide a particular service, an application chooses a subset of these
extensions and combines them to produce an expected behavior. Therefore,
it is the rule and not the exception for different services within different
architectures to use different sets of extensions. The general feeling within
the SIP community is that the SIP toolkit is now complete enough for a
wide range of services. It is true that some extensions are still in Internet
draft status, but the set of extensions as a whole is believed to be virtually
complete. Minor extensions will certainly be added in the future to cover
missing functionality, but the most important extensions have already been
defined and are ready to use in any service architecture.

This chapter describes architectures that use SIP, among other protocols,
as a signalling protocol. These architectures define different logical boxes
and describe how SIP is used between them with a particular set of exten-
sions. In many examples, we will see that a particular logical box in an
architecture might act as a SIP proxy without being called one. Some peo-
ple have wondered if this is done just to confuse us with terminology and I
sympathize. The real reason for doing it is that a box can behave like a
proxy with respect to SIP, but also have interfaces where protocols other
than SIP are used. Therefore, a particular box might be seen as a SIP proxy
in one way whereas it might be seen as an LDAP client in another way. The
new names defined by an architecture identify a logical box as a whole, tak-
ing into account its global functionality rather than just SIP.

This chapter is especially important for designers because it shows how
SIP has been used to resolve a variety of real problems. The exploitation of
SIP by different architectures is what makes SIP successful. A very well
designed protocol with no everyday applications would not be very useful.
We will see that SIP has been tapped by such architectures as the third gen-
eration (3G) of mobile systems and PacketCable—the architectures that
will bring SIP terminals to hundreds of millions of users.

Third-generation Mobile Systems
The third generation of mobile systems has aroused a lot of hype and
debate in the telecommunications world. It is seen as the technology that
will merge the Internet world and the cellular world. It is claimed that 3G
will provide ubiquitous access to all successful services provided by the

Chapter 7192

Internet. Second-generation (2G) mobile phones delivering only voice and
short message services between users will be replaced by advanced multi-
media terminals equipped with Internet access. Combining Internet tech-
nologies with widely available cellular access will make the Internet
mobile.

The Third Generation Partnership Project (3GPP) develops technical
specifications for 3G mobile systems based on evolving Global System for
Mobile communications (GSM) networks. The organizational partners of
3GPP are the Association of Radio Industries and Businesses (ARIB), the
China Wireless Telecommunications Standard (CWTS), the European
Telecommunication Standards Institute (ETSI), Committee T1, the
Telecommunications Technology Association (TTA), and the Telecommuni-
cations Technology Committee (TTC). The specifications elaborated by
3GPP will be used in 3G systems such as Universal Mobile Telecommuni-
cations System (UMTS).

Whereas 3GPP develops specifications for 3G systems based on GSM
networks, 3GPP2 develops technical specifications for 3G systems based on
ANSI/TIA/EIA-41 networks. Both projects, 3GPP and 3GPP2, are part of
the International Telecommunication Union (ITU) through the Interna-
tional Mobile Telecommunications-2000 (IMT-2000) process.

Network Domains

The 3G network, as defined by 3GPP, is divided into three different
domains: the circuit-switched domain, the packet-switched domain, and the
IP multimedia domain (commonly known as the IP multimedia subsystem).

The first of these domains employs circuit-switching technology to pro-
vide voice and multimedia over circuits. This domain is not dissimilar to 2G
systems, where all services are provided through circuit switching.

The packet-switched domain provides IP connectivity to the terminal. A
terminal obtains access to the Internet through this domain. Users can surf
the Web, send and receive e-mails, and do most of what can be done in the
Internet. This domain does not define any particular architecture on top of
IP; it can be seen primarily as an access technology. In earlier mobile gen-
erations, people used a dial-up connection or an Internet Services Digital
Network (ISDN) line for this purpose; 3G systems will provide Internet
access through the packet-switched domain. What the user does with this
access is strictly up to the user.

The third domain is the most important one from our point of view. The
IP multimedia domain provides IP-based multimedia services to users

193Building Applications with the SIP Toolkit

employing SIP as the principal signalling protocol. In 3G architectures,
multimedia services take on new importance and are separated out for
closer examination.

The IP Multimedia Domain The first question that a reader might ask
is how the IP multimedia domain differs from the packet-switched domain.
A 3G terminal in the packet-switched domain could theoretically use its cel-
lular Internet access to contact the SIP server of the user’s choice and get
the service he or she wants. However, although the logic behind this sce-
nario is real, the characteristics of cellular access make it unlikely to hap-
pen. In order to obtain efficient data transport, a radio interface must be
configured with full awareness of the characteristics of the data that will
be transported. Otherwise, data transfers slow down and fall short of the
requirements for real-time traffic. Voice cannot transmit over a radio inter-
face unless the network knows which codec is used, with what port num-
bers, IP addresses, and so on. Only then can the network apply techniques
such as error protection and header compression to make the voice trans-
fer efficient. These techniques also improve the perceived quality of voice
received by a terminal beyond anything that could be delivered over the
packet-switched domain. Herein lies the main reason to couple access and
multimedia service provision in the cellular environment.

IP Multimedia Architecture SIP is used as the principal signalling
protocol within the IP multimedia domain. All 3G terminals contain a SIP
User Agent (UA), and IP multimedia network nodes consist of SIP proxies.
However, as we explained before, these are not actually called SIP proxies.
Instead, they’re referred to as Call/Session Control Functions (CSCFs).

The 3GPP architecture defines three types of CSCFs, each with a differ-
ent role. They are the Proxy CSCF (P-CSCF), Serving CSCF (S-CSCF), and
Interrogating CSCF (I-CSCF). The P-CSCF is the point of contact between
the network and the terminal. Both outgoing and incoming SIP messages
traverse the P-CSCF. A P-CSCF acts as an outbound SIP proxy because all
SIP requests are sent to it regardless of their final destination.

The S-CSCF provides services to the user.When a terminal REGISTERs,
it is associated with an S-CSCF, which provides it with services that the
user is subscribed to. Both outgoing and incoming sessions will traverse the
S-CSCF associated with the terminal. This way, an S-CSCF can provide
services on both types of sessions.

The role of the I-CSCF is to find the proper S-CSCF for a particular user.
When an I-CSCF receives a request, it routes to the S-CSCF that has to

Chapter 7194

handle the session. For incoming sessions, the I-CSCF is the point of contact
within a provider’s network; it receives requests for a user within its
domain and routes them to the proper S-CSCF. For outgoing sessions, the I-
CSCF receives requests from the user and routes them to the associated S-
CSCF.

The IP multimedia domain of a provider’s network contains many
CSCFs of each of these three types.

Another vital node in the IP multimedia domain, albeit not a SIP node,
is the Home Subscriber Server (HSS). The HSS contains the S-CSCF asso-
ciated with an individual user and his or her profile. As a result, it knows
where the user is reachable and which services he or she is subscribed to.
CSCFs consult the HSS when they need such information.

Call Flow Examples

The following examples will help us understand the role of the different
nodes in this architecture.

User Registration Figure 7-1 shows terminal registration in a 3G net-
work. The point of such a registration is to assign an S-CSCF to the user.
The S-CSCF will be in charge of providing services to the user. This REG-
ISTER from the terminal is sent, as any request from the terminal would

195Building Applications with the SIP Toolkit

(7) Response

S–CSCFI–CSCFP–CSCF
Laura's
terminal HSS

(1) REGISTER
(2) REGISTER

(5) REGISTER
(6) Query

(3) Query

(10) 200 OK
(9) 200 OK

(8) 200 OK

(4) Response

Figure 7-1
Registration in a 3G
network.

be, to the P-CSCF. The P-CSCF is the point of contact between the termi-
nal and the network. The P-CSCF sends the REGISTER to the I-CSCF. The
I-CSCF has to choose an S-CSCF for the user. To do that, the I-CSCF con-
sults the HSS. Note that the protocol used between them is not SIP. The
HSS can be thought of as a location server. It interacts with SIP entities,
but does not speak SIP.

The response from the HSS contains enough information so that the I-
CSCF can select a particular S-CSCF for the user. Then the REGISTER is
forwarded to the chosen S-CSCF. Upon receipt of the REGISTER, the S-
CSCF downloads a user profile from the HSS, telling it which services the
user requires. Finally, it answers the REGISTER with a 200 OK response.

Registration from a Visited Domain The previous scenario becomes
more complex when the user is not on his or her home network. A central
requirement for 3G systems is that users must be able to roam from the
network of their service provider to any other network (global roaming).
This way, a user can tap into the services to which he or she is subscribed
even if he or she is on vacation or traveling internationally. Whenever a
user is roaming, two distinct domains come into play: the home domain and
visited domain. The former is the IP multimedia domain of his or her ser-
vice provider and the latter is the IP multimedia domain of the network
that he or she is currently using.

When a user establishes a session, his or her SIP messages typically
traverse a set of CSCFs in both the visited and the home domains. Fig-
ure 7-2 shows how a user sends a REGISTER from his or her visited
domain to his or her home domain. The message flow is exactly the same as
in the previous picture, but in this example, it is possible to distinguish both
domains.

When the P-CSCF of the visited domain receives the REGISTER,
it detects that this user is not at his or her home domain. The P-CSCF
forwards the REGISTER to the user’s home domain. From that point on,
the process is the same as in any registration from the home domain. The
I-CSCF chooses an S-CSCF by consulting the HSS and the S-CSCF down-
loads the profile of the user.

Note that after the registration, the HSS knows which S-CSCF has been
associated with the user. Therefore, in case of an incoming INVITE for that
user, the HSS will be able to provide enough information to locate the S-
CSCF in charge of the user. The S-CSCF will then forward the INVITE to
the user. This scenario is described in the following example.

Chapter 7196

Session Between Users Who Are Roaming Figure 7-3 is the message
flow of a session establishment between two users who are roaming. This
is the most general scenario because it shows an outgoing and incoming
session from a visited domain.

Let’s parse the roles of the different network nodes in this session estab-
lished between Bob and Laura. Bob is on a business trip to another country.
When he arrives at his destination, he REGISTERs his current position as
in Figure 7-2. Laura is on vacation and also away from her home domain.

Laura sends an INVITE to the P-CSCF. The P-CSCF notices that Laura
belongs to another provider and forwards the INVITE to the proper net-
work. The I-CSCF of Laura’s home domain consults the HSS (not shown in
the picture) and sends the INVITE to the S-CSCF that was assigned to
Laura when she registered. The S-CSCF will send the INVITE to Bob’s
home domain.

From Bob’s home domain’s point of view, this is an incoming session for
a user who is roaming. The I-CSCF consults the HSS (not shown in the pic-
ture) and forwards the INVITE to the S-CSCF that handles Bob. The S-
CSCF knows that Bob is currently in a visited domain because he
previously registered his current location. Therefore, the INVITE is for-
warded to the P-CSCF near Bob, where Bob finally receives it.

197Building Applications with the SIP Toolkit

(7) Response

S–CSCFI–CSCFP–CSCF
Laura's
terminal

Visited domain Home domain

HSS

(1) REGISTER
(2) REGISTER

(5) REGISTER
(6) Query

(3) Query

(4) Response

(10) 200 OK
(9) 200 OK

(8) 200 OK

Figure 7-2
Registration in a
3G network from a
visited domain.

198

I-C
S

C
F

S
-C

S
C

F
I-C

S
C

F
S

-C
S

C
F

P
-C

S
C

F
B

ob
's

te
rm

in
al

P
-C

S
C

F
La

ur
a'

s
te

rm
in

alLa
ur

a'
s

vi
si

te
d

do
m

ai
n

La
ur

a'
s

ho
m

e
do

m
ai

n
B

ob
's

 h
om

e
do

m
ai

n
B

ob
's

 v
is

ite
d

do
m

ai
n

(1
) I

N
V

IT
E

(2
) I

N
V

IT
E

(3
) I

N
V

IT
E

(1
4)

 2
00

 O
K

(5
) I

N
V

IT
E

(4
) I

N
V

IT
E

(6
) I

N
V

IT
E

(7
) I

N
V

IT
E

(1
3)

 2
00

 O
K

(1
2)

 2
00

 O
K

(1
1)

 2
00

 O
K

(1
0)

 2
00

 O
K

(9
) 2

00
 O

K
(8

) 2
00

 O
K

Fi
g

u
re

 7
-3

Se
ss

io
n

 b
et

w
ee

n
 r

o
am

in
g

 u
se

rs
.

Instant Messages and Presence
Instant messages and presence information are great examples of using the
SIP toolkit to provide a combined service. We saw in previous sections how
instant messages can be sent using the MESSAGE request. We also saw
how a user can subscribe to certain events using the SUBSCRIBE and the
NOTIFY methods. An application combining these two SIP extensions can
provide both instant messages and presence information.

The service in question provides a user with information about the sta-
tus of his or her friends and enables the user to send them instant mes-
sages. SIP is another way to establish multimedia sessions by using the
same network’s infrastructure of SIP servers.

The user interface of such an application is usually a buddy list dis-
played on the screen. Each person in the list has a label indicating his or
her current status. Because Laura has included Bob in her buddy list, his
name will appear on the list. If Bob is busy on his workstation, his name
appears with the label available. When Bob goes for lunch, his label
changes to unavailable. This way, Laura knows if she can send him a short
message at any given moment.

Now Laura clicks on Bob’s name, selects send instant message, and
dashes a message off. If, after exchanging some messages, Laura wants to
make a voice call to Bob to clarify something, she just has to click again on
Bob’s name and select establishing a voice call instead.

SIMPLE Working Group

The Instant Messaging and Presence Protocol (IMPP) working group was
chartered to build a protocol that enables applications combining instant
messages and presence information. However, after working on the require-
ments for such a protocol [RFC 2779], the working group could not come to
a consensus. Different groups of people within the IMPP working group had
completely different proposals. All of the different proposals had pros and
cons.

After merging some proposals, the working group ended up with three
main approaches to provide instant messaging and presence service: APpli-
cation EXchange (APEX), Presence and Instant Messaging (PRIM), and SIP
for Instant Messaging and Presence Leveraging Extensions (SIMPLE).

199Building Applications with the SIP Toolkit

We will focus on the third approach, SIMPLE, because it is based on SIP.
The SIMPLE working group met for the first time at the 50th Internet Engi-
neering Task Force (IETF) meeting in Minneapolis (March 2001). Its task
was to define a set of extensions that would let SIP provide instant mes-
saging and presence service. Using SIP with these extensions will meet the
requirements outlined by the IMPP working group for every IETF protocol
that they might conceivably adopt for this purpose. When various
approaches to a problem are under consideration, the minimum require-
ment is that all protocols developed for instant messaging and presence
interoperate [draft-ietf-impp-cpim].

Presence Architecture

Basically, an instant messaging and presence service is implemented using
two SIP extensions: the MESSAGE method and the SUBSCRIBE/MODIFY
framework. The architecture used for presence consists basically of two
nodes: the Presence User Agent (PUA) and a presence server.

The Presence User Agent, as we call a SIP UA used for presence services,
REGISTERs the user’s status with the presence server. Hence when Bob
logs off his laptop, Bob’s PUA will send a REGISTER reporting that Bob is
currently unavailable to the presence server.

Remember that a single user might have several PUAs. For instance,
Bob has a PUA in his workstation and another one in his laptop. Thus, the
presence server gathers REGISTERs from these two devices to keep track
of a single user.

Suppose another user is interested in Bob’s presence information, so he
subscribes to Bob’s presence server. After that, every time Bob’s presence
information changes, the presence server will transmit a NOTIFY request
with new status information. Laura is usually interested in what Bob is up
to and her PUA receives a NOTIFY saying that Bob has logged off. Laura
will see the label on her screen next to Bob’s name change from available to
unavailable.

In Figure 7-4, Bob’s two PUAs send presence information through REG-
ISTERs to the presence server. Laura SUBSCRIBEs to Bob’s presence
information for updates on Bob’s presence.

This example shows how Bob’s PUAs send a simple form of presence
information: available or unavailable. However, SIP can furnish much more
information than this. Bob might be unwilling to receive voice calls, but

Chapter 7200

want to receive instant messages. Or Bob could even be unwilling to receive
voice calls from his boss, but happy to receive them from Laura. The
SIP REGISTER method and the SUBSCRIBE/NOTIFY framework provide
SIP with enough flexibility to implement this type of service in some
granularity.

Instant Messaging

Although presence information can be used to provide a wide range of ser-
vices, instant messaging is the one that has been most closely associated
with presence. Simple presence systems that just provide available or
unavailable status have typically been used to tell users who is or isn’t
receiving messages.

We’ve stipulated that the MESSAGE [draft-rosenberg-impp-im] method
can be used to send instant messages in SIP (Figure 7-5). The advantage of
using SIP is that it does more than just enable presence information and
instant messaging to be combined. SIP also lets presence information be
utilized in establishing any kind of session, including instant messaging
and multimedia sessions. Therefore, for applications that offer combined
services, SIP is definitively the choice as a presence and instant messaging
protocol.

201Building Applications with the SIP Toolkit

Laura
Presence

server
Bob's
laptop

Bob's
workstation

(8)200 OK

(5) SUBSCRIBE
Bob's presence info

(6)202 Accepted

(1) REGISTER
Unavailable
(2)200 OK

(7) NOTIFY
Bob is available

on his worksation

(3) REGISTER
Available
(4)200 OK

Figure 7-4
Bob has two PUAs
that send presence
information to the
presence server.

PacketCable
PacketCable is a project carried out by Cable Television Laboratories and
its member companies. Its purpose is to offer audio, video, and multimedia
services through the cable access network. It’s envisioned that cable TV
subscribers will be able to use their cable modem to make phone calls, for
instance. The concept is to provide combined services through the same
access technology.

This project represents a big endorsement for SIP. As a 3G network,
PacketCable addresses real customer needs using SIP with some exten-
sions. This type of project is a critical source of feedback and new ideas for
the SIP community. New requirements lead to the implementation of new
extensions.

Cable modems are everywhere in much the same way phones are, and
the PacketCable project will provide SIP multimedia services to a much
larger number of users.

Chapter 7202

(5) 200 OK

Bob Laura

(1) INVITE

(3) ACK

(2) 200 OK

(4) MESSAGE

"Costa del Sol"

How do you spell the
name of the place we are

going on vacation?

Figure 7-5
Bob sends an instant
message to Laura.

Architecture

The PacketCable architecture defines a set of nodes and the protocols that
will be used between them. SIP is one of the protocols used in this archi-
tecture, augmented by a set of extensions. The most important nodes
related to SIP operation in the PacketCable architecture are the Multime-
dia Terminal Adaptor (MTA) and the Call Management Server (CMS).

The MTA resides on user premises and has a user interface that resem-
bles a traditional telephone (POTS). Between the CMS and an MTA, a pro-
tocol called the Network Call Signalling (NCS) protocol comes into play.
NCS is an extended variant of the master/slave IETF protocol Media Gate-
way Control Protocol (MGCP) [RFC 2705]. The MTA acts as the slave, send-
ing events and responding to commands issued by the CMS.

For instance, the MTA informs the CMS when the user goes off hook or
when he or she types some digits. The CMS can then order the MTA to alert
the user or to open a media channel for voice. PacketCable architecture will
probably evolve so that the protocol used between an MTA and the CMS is
SIP instead of NCS.

The CMS is basically a SIP server. One CMS handles a domain
and thus typically controls several MTAs, as shown in Figure 7-6. The pro-
tocol used between CMSs is the Call Management Server Signalling
(CMSS) protocol. This is basically SIP with some extensions such as the
reliable delivery of provisional responses and Quality of Service (QoS)
preconditions.

Call Flow Example

Figure 7-7 illustrates SIP operation between two CMSs. Observe how the
different SIP extensions implemented in PacketCable systems work
together in a call. PacketCable implements the reliable delivery of provi-
sional responses and QoS preconditions so that when the callee picks up the
phone, the network will always have enough available resources to meet
call requirements.

203Building Applications with the SIP Toolkit

PSTN-to-SIP Interworking
Telephony applications are among the most promising for taking SIP main-
stream. In this arena, SIP is clearly an enabler for service builds. Tradi-
tional telephony providers are now building IP networks for voice
transmission in order to exploit Voice over IP’s (VoIP’s) service flexibility.

When the IP network is properly configured and the appropriate QoS
measures are taken, VoIP provides excellent voice quality that is compara-
ble (or even better) than that achieved by the public-switched telephone net-

Chapter 7204

MTA

MTA

MTA

CMS

MTA

MTA

MTA

CMS

MTA

MTA

MTA

CMS

Figure 7-6
PacketCable
architecture.

work (PSTN). At present, many VoIP providers offer cheaper international
calls than the PSTN. Therefore, it seems inevitable that VoIP will be the
future of the telephone network.

However, no matter how efficiently SIP implements telephony services
and no matter what level of quality it achieves, a hard-and-fast require-
ment must be fulfilled by any new telephone system: it must able to inter-
operate with the PSTN.

The PSTN is the largest telephone network in the world and even if it
eventually gives way to IP networks in the future, it will still exist for many
years. A huge telephony infrastructure cannot be thrown out and replaced
wholesale by new technology.

205Building Applications with the SIP Toolkit

CMS CMS

(1) INVITE

(7) 180 Ringing

(8) PRACK

(9) 200 OK

(10) 200 OK

(11) ACK

(6) 200 OK

(5) COMET

Q
oS

 re
se

rv
at

io
ns

Q
oS

 re
se

rv
at

io
ns

(2) 183 Session Progress

(3) PRACK

(4) 200 OK

Figure 7-7
PacketCable uses
QoS preconditions
and reliable
provisional responses.

Given the prominence of VoIP as a SIP driver, the community quickly
realized that compatibility with the protocols used in the PSTN was the pri-
mary job in making SIP viable. But as we’ve established in Chapter 1, both
the architecture and the design philosophy of the PSTN are at odds with
the IETF in general and SIP in particular. Compatibility can only be
achieved by implementing gateways to perform protocol conversions in the
border between the PSTN and the IP network (Figure 7-8).

Gateways work by acting as a network node for the PSTN and as an end
point for the SIP network. With this mechanism in place, the SIP architec-
ture is not influenced at all by the interworking with PSTN protocols. A
gateway typically looks just like a SIP UA to the SIP network. Thus, the
network responds to calls originated in the PSTN, which are calls origi-
nated by another SIP entity as far as SIP is concerned. Gateways let SIP
preserve all of its good features even as it connects to the PSTN. In fact, a
general rule for SIP interworking with other systems is to ensure that SIP
does not have to change behaviors to do so. It is always better to build a
complex gateway on the edge for protocol conversion than to push further
complexity into the protocols themselves.

The PSTN uses several different signalling protocols and thus several
types of gateways exist between the PSTN and SIP.

Chapter 7206

VoIP network

Gateway

Gateway

PSTN

Figure 7-8
Gateways between
networks provide the
interworking
function.

Low-Capacity Gateways

The proper architecture for a particular gateway is a function of its capac-
ity and its requirements. Low-capacity gateways usually integrate sig-
nalling and media handling in a single box. They usually interact with
PSTN access protocols such as Digital Subscriber Line No. 1 (DSS-1), and
they are intended to support residential or small office requirements.

For instance, a few years ago, Bob had an ISDN phone at home that used
DSS-1 to communicate to its PSTN local exchange (Figure 7-9). As technol-
ogy improved, he decided to replace his old ISDN phone with a small gate-
way that supports SIP and DSS-1 (Figure 7-10). Today he has connected his
new gateway to the small IP network (a LAN) that he has installed at

207Building Applications with the SIP Toolkit

DSS-1

Local
exchange

ISDN
terminal

PSTN

Figure 7-9
Bob’s old
configuration with
his ISDN phone.

DSS-1

ISDN/SIP
gateway

Local
exchange

SIP phone

PSTN IPnetwork

Figure 7-10
Bob’s new
configuration
with his ISDN/SIP
gateway.

home. The payoff is that Bob can now receive and make calls from his com-
puter or from his SIP phone when he is at home. He has upgraded his res-
idential communications to bring them in line with the business
communications he’s come to rely on—all without much hassle at all.

Let’s look at another case. Laura’s office has several phones connected to
a Private Branch Exchange (PBX) (Figure 7-11). Her boss wants to switch
telephone service providers because a new provider is offering more ser-
vices for cheaper rates. The problem is that all of the employees in Laura’s
company are used to working with their traditional phones (which, inci-
dentally, they like just fine) and don’t want to migrate to SIP phones. To
alleviate the need for users to change their behavior and management to
invest in new technology, the new service provider installed a gateway, and
now company staffers are using a SIP network without really noticing the
change (Figure 7-12). They use the same phones, dial numbers in the same
way, and receive calls just as before.

Chapter 7208

PBX

PSTN

Figure 7-11
Laura’s office with its
traditional phones.

209Building Applications with the SIP Toolkit

IP network

SIP-enabled
PBX

Figure 7-12
Laura’s office with its
new PBX and still
with its traditional
phones.

High-Capacity Gateways

As opposed to single-box, low-capacity gateways, high-capacity gateways
are usually distributed. That is, different parts of the gateway performing
different functions are kept separate. Figure 7-13 shows the most common
architecture for a high-capacity gateway:

The Signalling Gateway (SG) receives signalling from the PSTN side
and encapsulates it over IP (and vice versa). The transport protocol used for
this purpose is usually the Stream Control Transmission Protocol (SCTP).
The SG does not modify these signalling messages; it just routes them to
the proper Media Gateway Controller (MGC).

An MGC performs two tasks: (1) it converts the signal between the
PSTN’s signalling protocol (usually ISDN User Part (ISUP)) and SIP, and
(2) it controls the Media Gateway (MG). The MG is responsible for media
conversion. It incorporates both voice-over-circuits and VoIP interfaces. An
MGC issues commands to the MG such as open voice channel or close voice
channel. The protocol they use to communicate is a master/slave protocol
such as MGCP or H.248.

SIP Extensions for PSTN Interworking

Gateways between SIP and the PSTN normally make use of some common
SIP extensions. They usually support reliable delivery of provisional
responses in order to deliver progress reports to the PSTN side. Gateways
often support QoS preconditions as well. Besides these common extensions,
two other extensions were designed with PSTN interworking in mind: the
INFO method and MIME media types for ISUP and QSIG Objects. They
are used between two gateways for calls that originate in the PSTN, tra-
verse a SIP network, and end up back in the PSTN again. This scenario is
referred to as SIP bridging (Figure 7-14).

A call between two PSTN phones might traverse a SIP network for many
reasons. It might have to utilize some enabling services that are only pre-
sent in the SIP network. If it couldn’t traverse the SIP network, all such
services would be off-limits to PSTN users. Another call might be routed
through SIP because it’s cheaper for the provider. A provider might also use
his or her IP network to offload his or her circuit-switched network. Under
some circumstances, a call originally destined for a SIP phone can be redi-
rected to a PSTN phone.

Chapter 7210

PSTN signalling

Voice stream Voice stream

Signalling Gateway

PSTN side IP side
SIP

PSTN signalling over IP

Master/slave control protocol

Media Gateway Controller

Media Gateway

Figure 7-13
Architecture of a
distributed gateway.

In SIP bridging scenarios, neither PSTN end user is willing to lose any
special feature provided by the PSTN just because the call is traversing a
SIP network. Therefore, SIP bridging has to provide a certain level of fea-
ture transparency. The information contained in the PSTN signalling mes-
sages has to be preserved when converted to SIP messages in the IP
network, so that the egress gateway can regenerate the PSTN messages
properly at the remote-user terminal.

Multipart Message Bodies Problem: PSTN protocols carry some infor-
mation that cannot be mapped to any SIP header. Thus, the obvious solu-
tion of performing a simple mapping from ISUP to SIP won’t work because
it leads to some loss of information in the ISUP message. If the informa-
tion lost happens to relate to a certain PSTN feature, the feature is lost as
well.

To prevent information loss, PSTN protocol messages are carried by SIP
in message bodies. The MIME media types for ISUP and QSIG Objects
were defined for this purpose [draft-ietf-sip-isup-mime]. QSIG is a PSTN
signalling protocol used by PBXs. A particular SIP message carries a mul-
tipart message body that contains an ISUP message, for instance, and
a session description using Session Description Protocol (SDP). For the

211Building Applications with the SIP Toolkit

PSTN
switch

ISUP/
SCTP

SIP SIP

H.248

ISUP/
SCTP

H.248

MGC
MGC

MG

SG

Signalling

Voice stream

MG

SG

IP network

PSTN
switch

Figure 7-14
SIP bridging.

concrete case of ISUP to SIP interworking (which is probably one of the
most interesting scenarios), a set of guidelines [draft-ietf-sip-isup] help
implementers do a consistent mapping between both protocols.

INFO Method MIME media types solve the problems of sending infor-
mation in SIP messages that does not map to any SIP header. That’s not
the whole problem, however. Some PSTN protocols have messages that
don’t map to any SIP message. For instance, if a gateway receives a PSTN
signalling message in the middle of a call, no SIP message can be sent to
the egress gateway in order to transfer it from the PSTN. INFO [RFC 2976]
method was created for this purpose. The INFO method is used to carry
mid-call PSTN messages in its body. Figure 7-15 shows MIME media types
and INFO in an interworking situation.

INVITE and the 200 OK carry in their bodies, apart from the session
description, a PSTN signalling message. ACK might carry another PSTN
signalling message, but it typically does not because PSTN signalling pro-
tocols rarely use a three-way handshake.

Once a session is established, the ingress gateway receives a PSTN sig-
nalling message. It uses the INFO method to transmit such signalling to
the egress gateway. The INFO method does not have to modify any para-
meter of the SIP session to enable the exchange of PSTN messages between
gateways.

Chapter 7212

(3) PSTN signalling

PSTN
exchange

Ingress
gateway

Egress
gateway

PSTN
exchange

(1) PSTN signalling

(8) PSTN signalling

(2) INVITE
SDP

PSTN signalling message

(7) ACK

(9) INFO
PSTN signalling message (10) PSTN signalling

(6) PSTN signlling

(11) 200 OK

(5)200 OK
SDP

PSTN signalling message

(4) PSTN signalling

Figure 7-15
MIME media types
and INFO used for
SIP bridging.

The PINT Service Protocol

Another type of interworking with the PSTN is defined by PINT. The IETF
PSTN and Internet Interworking (PINT) working group studies how Inter-
net devices request PSTN telephony services. For instance, a user can click
on a link in a Web page to request that someone from the support depart-
ment call him or her on the PSTN phone. Or a user can request that a fax
be sent to a certain machine on the PSTN providing the data, possibly
though a pointer, to be faxed.

The PINT working group developed the PINT protocol [RFC 2848] in
order to provide this kind of service. The protocol consists of SIP and SDP
with extensions. Among other extensions, PINT uses the SUBSCRIBE/
NOTIFY methods to receive status reports about the services invoked.

PINT’s goal is to use SIP in a limited way to establish only those sessions
that do not fall into the category of Internet sessions. PINT defines the SDP
format to describe a fax session, for instance. Once this format is defined,
SIP is used as usual to establish a session. The only difference is that the
session in question happens to be a fax over the PSTN rather than Real-
time Transport Protocol (RTP) packets over the Internet. Once again we can
see the strength of separating session description from session establish-
ment. The same protocol, SIP, can be used to establish any kind of session.
The only requirement is that a session description format that can be car-
ried in a SIP body must be present to describe it.

Figure 7-16 shows how Bob uses SIP to fax Laura. Bob does not have a
fax machine in his office, but the information she needs is on ftp://ftp.com-
pany.com/Bob/document.txt. Using SIP, he sends an INVITE to a PINT
gateway that specifies the information to be sent (through a Universal
Resource Identifier (URI)) and bears Laura’s fax machine number (1-212-
555-5555). The PINT gateway interfaces the Internet and the PSTN. It
downloads the information from the URI provided and sends it to Laura’s
fax machine, while it sends notifications to Bob about the status of the fax.

The SDP syntax to describe this service is pretty simple. A new address
type (c line) has been defined as Telephone Network (TN). It contains a
PSTN phone number. The m lines describe the media stream (voice, fax, or
pager).

c= TN RFC2543 +1-212-555-5555

m= text 1 fax plain

a=fmtp:plain uri:ftp://ftp.company.com/~Bob/document.txt

213Building Applications with the SIP Toolkit

SIP for Conferencing
We know that many services that have been implemented using SIP consist
of point-to-point sessions. When Bob establishes a session with Laura, they
engage in a two-party session where signalling and media is exchanged
directly between them and no one else. However, two-party sessions are not
what SIP does best. In fact, we saw that SIP and SDP were originally
designed for conferences on the MBONE where members of a multicast
group receive media on a multicast address.

Multiparty conferences form the basis of many services. Probably the
easiest example is a videoconference with three or more members. In this
case, exchanging media between persons at the conference is synonymous
with being conferenced.

Nothing mandates that conference members must all be humans,
though. Conferencing is used in many situations where only two humans
are involved. For instance, Bob and Laura can have a business meeting over
their SIP phones and record their conversation so Laura’s assistant can
later prepare the meeting minutes. In this scenario, Bob and Laura are in

Chapter 7214

(4) SUBSCRIBE

(9) 200 OK

Faxing 2nd page

Faxing 1st page

(5) 200 OK

(2) 200 OK
(3) ACK

(6) NOTIFY
Faxed 1 out of 2 pages

(8) NOTIFY
Faxed 2 out of 2 pages

(7) 200 OK

(1) INVITE
c=TN RFC2543+1-212-555-5555

m=text 1 fax plain
a=fmtp:plain uri:ftp://ftp.company.com/~Bob/document.txt

Bob's
laptop

PINT
gateway

Laura's
fax machineFigure 7-16

Fax session over
the PSTN established
by SIP.

fact on a multiparty conference because the recording machine is a third
member of the session.

Conferencing mechanisms [draft-rosenberg-sip-conferencing-models] are
most powerful when seen as service enablers rather than just a means for
a large group of people to communicate. The introduction of non-human
conference members can provide many different services, including back-
ground music and image manipulation.

In the following section, we will describe several conferencing models
supported by SIP and how they are implemented.

Multicast Conferences

The first thing to notice is that although members of a multicast group
receive media on a multicast address, SIP signalling is point to point
between session participants.

For instance, Bob can send an INVITE to Laura with the description
of a multicast session. Bob and Laura use traditional unicast to send
and receive SIP messages, but use multicast to send and receive media.
Therefore, a point-to-point protocol like SIP can be used to signal multicast
conferences.

Multicast conferences are usually prearranged events and thus, SIP is
not used to create them or to terminate them. Accordingly, a SIP INVITE
for a multicast conference is used only to INVITE users and not to establish
the conference session. SIP BYEs are also not used when a user exits the
conference. Note that each participant typically has a SIP signalling rela-
tionship with just one other participant, not with all the participants in the
conference.

Multicast conferences work well for prearranged events with a large
number of participants. However, for smaller events or for ad-hoc confer-
ences, obtaining multicast addresses to deliver the media is not worthwhile.
Hence, SIP supports other conferencing models that don’t scale as well but
provide other advantages.

End User Mixing Model

It is common for a two-party session to add participants as time goes by.The
most straightforward way to conference in a new participant is for a current
member of the session to INVITE him or her. The member who issues the

215Building Applications with the SIP Toolkit

INVITE will receive media from both the previous member and the new
member. He or she will then have to mix the media and send the result to
both of them.

This mechanism, depicted in Figure 7-17, works when the user perform-
ing the mixing is also the last person to leave the conference. But as the
number of participants grows, the processing power required to mix the
media from all participants will quickly exceed the user’s equipment capa-
bilities. So the end user mixing model is great for small ad-hoc conferences,
but it cannot successfully be extended to larger sessions. Other conference
models supported by SIP, notably those using a Multipoint Control Unit
(MCU), are preferable.

Multipoint Control Unit (MCU)

MCUs are used for both prearranged and ad-hoc conferences. In a pre-
arranged conference, users INVITE the MCU and the MCU mixes the
media and sends it to all of them, establishing a signalling relationship
between the MCU and each participant.

Chapter 7216

Signalling

Signalling

Media

Signalling

Media

Media

Figure 7-17
End user mixing
conference model.

217Building Applications with the SIP Toolkit

Signalling

Signalling

Media

Signalling

MCU

Signalling

Media
Media

Media

Figure 7-18
Conference with
an MCU.

Alternatively, instead of having users invite the MCU, the MCU can
INVITE participants to join a conference—a tactic particularly useful for
prearranged events, where the MCU can INVITE all the users at once. In
either case, the MCU handles both signalling and media for the conference
(Figure 7-18).

An MCU-based conference scales better than an end user mixing confer-
ence. MCUs are prepared to handle media mixing and boast high process-
ing capacity. However, an end user mixing conference can be converted into
an MCU conference by means of the REFER method. In order to migrate
from one model to the other, users are instructed to INVITE the MCU.

Decentralized Multipoint Conference

When media is sent in a decentralized fashion, it constitutes a special case
of using a central signalling point such as an MCU. The conference unit
handles signalling only when users send media using unicast or multicast
(Figure 7-19). When multicast is used, the conference unit returns an SDP

description to each participant with the multicast address that will be used.
In the case of unicast, the conference unit adds a new m line though a re-
INVITE every time a new participant joins the conference to trigger all cur-
rent users to send media to the new participant as well.

This model simplifies the building of conference units because it obviates
the need to handle media. In the case of multicast media, this model scales
very well and a conference can handle many signalling relationships. When
unicast media is used, though, the end systems have to send the same
media in parallel to several different locations. End systems with low pro-
cessing power might experience difficulty as the number of participants
grows and choose to migrate to an MCU that handles media as well.

Chapter 7218

Signalling

Signalling
Signalling

MCU

Signalling

Media

Media Media

Media

Figure 7-19
Decentralized
multipoint
conference model.

219Building Applications with the SIP Toolkit

Control of Networked Appliances
Currently, the number of home devices with a network interface is rela-
tively small: a desktop computer, perhaps a laptop, a printer, and so on. This
situation is expected to change dramatically in the next few years. When
everyday appliances such as the refrigerator or the alarm clock include a
network interface, they become networked appliances. The main advantage
of networked appliances is their capability to interact with one another and
with any other networked device. Thus, when the refrigerator is running
out of mayonnaise, it can order a fresh supply through the supermarket’s
Web page. The bedside clock can get information about traffic conditions
and reset the alarm accordingly. If Bob forgets to turn off the porch light
when he leaves home in the morning, he can always turn it off from his
office.

A number of protocols are already designed to control networked appli-
ances within a home. However, no solution is available for the inter-domain
communication of network appliances [draft-tsang-appliances-reqs]. SIP,
suitably extended, is a candidate to perform this role. Figure 7-20 shows
how various SIP extensions work together to control the appliances inside
a house. Say that a technician is scheduled to fix Bob’s washing machine in
the morning when Bob is at work. Bob simply SUBSCRIBEs to his doorbell.
When the technician rings the bell, he automatically causes a NOTIFY to
go to Bob. Bob then establishes a video session with the camera on his door,
and checks that the person ringing is the technician. He also establishes an
audio session with the audio system on his door and informs the technician
that no one is home. Bob explains the trouble he’s been having with the
washing machine and gives the go-ahead for repairs. At this point, Bob
sends a DO to his door in order to unlock it. Now the technician can do his
work while Bob observes him through cameras installed in his place. When
the technician finishes the job and leaves the apartment, Bob sends another
DO to relock his door.

In this scenario, one of the main services SIP provides is security. Every
command sent by Bob has to be strongly authenticated before it is per-
formed. Bob definitely does not want anyone else to use the cameras in his
place or to unlock his door. The SIP security framework provides mecha-
nisms to control networked appliances while ensuring the privacy of the
user.

Chapter 7220

(15) DO
Lock door

(16) 200 OK

Bob Door's lock
Bob's camera

system
Audio system
at Bob's door Doorbell

(5) INVITE

(7) ACK

(8) INVITE

(10) ACK
(9) 200 OK

(6) 200 OK

(17) BYE

(18) 200 OK

(1) SUBSCRIBE
Doorbell status

(2) 200 OK

(3) NOTIFY
Doorbell is ringing

(2) 200 OK

(6)200 OK Bob checks that the person ringing
is the technician

Th
e

te
ch

ni
ci

an
do

es
 h

is
 w

or
k

Conversation between Bob and the technician

(11) BYE
(12) 200 OK

(13) DO
Unlock door
(14) 200 OK

Figure 7-20
Bob controls
his networked
appliances from
his office.

This chapter has provided some examples of architectures that use SIP
as a signalling protocol. Now it is clear for the reader how to combine dif-
ferent SIP extensions, and even different protocols in order to provide real-
life services to real users.

APPENDIX

Finding Futher Information on SIP

This appendix is for those of you that have finished this book and would like
to read even more about SIP. The best way to find information about SIP or
any other protocol developed by the IETF is to surf the Internet. However,
if you are not familiar with IETF protocols, you might spend more time
than you would like, looking for a particular piece of information on the
Web. Finding a good Web page on a protocol is sometimes difficult. A regu-
lar search engine will return too many hits if you just introduce the word
"SIP," for instance. This appendix contains the most useful Web pages
related to SIP. These Web pages will help readers find the information they
want more rapidly. We also give information about the most interesting
SIP-related mailing lists. As we mentioned before, mailing lists are one of
the most important tools in the IETF protocols development.

At the end of this appendix, we provide the readers with an example of
an RFC. This will help them understand what an IETF specification looks
like.

IETF Web site

The best place to find any specification of an Internet protocol is, of course,
the IETF Web site (see Figure A-1).

The IETF Web page (http://www.ietf.org) contains information about the
organization itself and about past and future meetings. However, we are
more interested in finding technical specifications. We have given a number
of references to Internet drafts and RFCs throughout the book. Finding any
of those documents on this Web site is pretty easy. Under the link "Internet-
Drafts," we will be able to look for a draft by the name of its author or title.
There is also an index with all the Internet drafts classified by the working
group they belong to.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

If we are after a particular RFC rather than an Internet draft, we will
find what we need under the link "RFC Pages." There we can look for a cer-
tain RFC number or read through the RFC index, which contains all the
RFCs published by the IETF.

Any reader who is used to looking for information in other standardiza-
tion bodies’ Web pages will soon notice that the IETF does not require any

Appendix222

The Internet Engineering Task Force

IETF Mirror Sites

IETF Mirror Sites

IESG Activities/Actions

IETF Working Groups

Internet-Drafts

RFC Pages

Additional Information

The Internet Standards Process

The IETF is an organized activity of the

The IETF Secretariat is hosted by the Corporation for National Research Initiatives.

Related Web Pages:

Meetings

51st IETF - London, England
August 5-10, 2001

Proceedings

Mailing Lists

Intellectual Property Right Notices

Joining the IETF

LAB RFC Editor IANA IRTF

Figure A-1
http://www.ietf.org

kind of password or membership information in order to download any
specification—they are available for free to any individual. Finding docu-
ments on the IETF Web page is much simpler than in other organizations,
where it is difficult to keep track of the different versions of a certain
document.

Readers might also find it useful to surf through the "IETF Working
Groups" link. From there it is possible to access the Web pages of the dif-
ferent working groups. The reader will especially find the charters of SIP,
SIMPLE, and MMUSIC very interesting. Another working group that
might be of interest is IPTEL.

The Web page of a working group also contains instructions about how to
join the mailing list of that specific working group. Reading the archives of
any mailing list will provide the reader with several examples of the tech-
nical discussions that are carried out within the IETF community.

Note however that the mailing list of a working group is intended to be
used by the engineers that are developing the protocol. The mailing list is
not the proper place for people who are not very familiar with SIP to post
basic questions about the protocol. There exists another mailing list for gen-
eral information and discussions of existing implementations called "SIP
implementors." Information about how to get subscribed to this mailing list
can be also found in the SIP working group Web page (http://www.ietf.
org/html.charters/sip-charter.html). In the next section, we will see where to
find a useful set of Frequently Asked Questions (FAQ).

Henning Schulzrinne’s SIP Web page

We have seen that the IETF Web site is the best place to download protocol
specifications and to get subscribed to mailing lists. However, if you are
after general SIP information, Henning Schulzrinne’s Web page (Figure
A-2) is the one you are looking for (http://www.cs.columbia.edu/sip).

Schulzrinne, one of the co-author’s of SIP, maintains this Web page and
it is unarguably the best page to follow SIP development. The "news" sec-
tion contains information about SIP-related important events such as the
release of a new RFC, or links to the organizers of the next SIP interoper-
ability event. Schulzrinne’s Web page also contains links to different orga-
nizations making use of SIP and to different presentations given in
different telecommunications conferences. It is worthwhile to spend some

223Appendix

Appendix224

SIP, the Session Initiation Protocol, is a signaling protocol for Internet conferencing, telepony,
presence, events notification and instant messaging. SIP was developed within the IETF MMUSIC
(Multiparty Multimedia Session Control) working group, with work proceeding since September 1999
in the IETF SIP working group.

A number of standardization organizations and groups are using or considering SIP:

 • IETF PINT working group
 • 3GPP for third-generation wireless networks
 • Softswitch Consortium
 • IMTC and ETSI Tiphon are working onSIP-H.323 interworking
 • PacketCable DCS (distributed call signaling) specification
 • 3GPP (for third-generation wireless)
 • SpeechLinks, for moving between speech-enabled sites

• May 29, 2001: RFC2543bis (-03) draft
• May 4, 2001: Information about the 8th SIP Interoperability Test Event is now available
• April 14, 2001: search feature added.
• April 11, 2001: The SIP interoperability test event has a new logo, courtesy of Ubiquity.

• April 10, 2001: RFC 3087 (Control of Service Context using SIP Request-URI) published
• Feb. 1, 2001: RFC 3050 (Common Gateway Interface for SIP) published
• Nov. 30, 2000: Caller preferences draft in WG last call until December 24, 2000
• Nov. 29, 2000: Guidelines for Authors of SIP Extensions draft in WG last call until December
 24, 2000
• November 24, 2000: RFC2543bis (-02) draft
• Nov. 17, 2000: CPL in IESG last call.
• RFC 2976 (The SIP INFO Method) published
• The sixth SIP interoperability test event took place December 5-8, 2000 at Sylantro and Sun in
 Silicon Valley, California.
• June 20, 2000: The SIP Forum was founded. "SIP Forun is a non profit association whose
 mission is to promote awareness and provide information about the benefits and capabilities that
 are enabled by SIP."
• The fifth SIP interoperability test event took place August 8-10, 2000 at pulver.com in Melville,
 Long Island.
• June 15, 2000: RFC 2848, The PINT Service Protocol: Extensions to SIP and SDP for IP Access
 to Telephone Call Services, published.
• Added SIP internship and job listing.
• The fourth SIP interoperability test event took place April 17-19, 2000 in Rolling Meadows
 (near Chicago), Illinois, hosted by 3Com.
• February 28, 2000): Draft The SIP INFO Method is in IETF last call for Proposed Standard.
• September 1999: A new IETF working group on SIP has been created.
• The third SIP interoperability test event took place December 6th throught 8th, 1999 in
 Richardson, Texa, hosted by Ericsson.
• The second SIP interoperability test event took place August 5th and 6th, 1999 at pulver.com
 (Melville, NY).
• The first SIP interoperability test event (known as "bake off") took place April 8th and 9th, 1999
 at Columbia University, New York.
• SIP is a Proposed Standard (Feb. 2, 1999) published as RFC 2543 (March 17, 1999).
• New list of public SIP servers.

[Overview] [Where is SIP being discussed?] [Search] [What SIP extensions are being planned?]
[Drafts] [SIP grammar] [Implementations] [SIP service providers] [mailing list] [Public SIP
Servers] [Papers] [Talks] [Related Drafts and Documents] [Draft History] [Frequently Asked
Questions (FAQ)] [Port Assignments and DNS] [Compact headers] [SIP-related events] [SIP
interoperability testing events] [Press Coverage] [Emergency Calling] [Non-Internet-related SIP
sightings] [Status and Schedule] [Internships and Jobs] [Other SIP sites]

Last updated Friday, June 15, 2001 21:30:07 by Hennig Schulzrinne

HITOMETER

316045

News

Session Initiation Protocol (SIP)

Figure A-2
http://www.cs.
columbia.edu/sip

time surfing through this Web page to get familiar with it. All the informa-
tion that one needs about SIP can be found here.

Of special interest is the FAQ section. Any newcomer to SIP who has any
question and is thinking of posting a message to the general information
mailing list should first check the FAQ section.The most common questions
with their answers are gathered here. Checking the FAQs first before post-
ing questions to a mailing list does not just save some bandwidth. It also
saves time to the engineers that are subscribed to that mailing list in order
to help people to get familiar with the protocol. They very much appreciate
not having to answer the same question several times.

Dean Willis’ Web Pages

A link to Dean Willis’ Web page can be found in the SIP working group offi-
cial Web page at the IETF. This additional SIP Web page (http://www. soft-
armor.com/sipwg) is maintained by Dean Willis, co-chairman of the SIP
working group. This Web page (Figure A-3) deals with the administrations
of the SIP working group. It has information about the small design teams,
groups of people that work together to resolve a specific issue, and about the
final call calendar.

The final call calendar is very important because by looking at it, we can
know when an Internet draft will become an RFC. This is the best place to
check the maturity of different extensions. When a draft enters in its final
call, the working group has a last chance to comment on it before the work-
ing group sends the draft to the IESG. Once the draft is submitted to the
IESG, the area directors will decide if it can become an RFC or if the work-
ing group needs to continue working on it longer.

Dean Willis also maintains another Web page (Figure A-4) at http://www.
softarmor.com/sipping. This Web page contains work leading to specify
frameworks and requirements for new SIP-based applications.There is also
a last call calendar with the status of all the related Internet drafts.

225Appendix

Appendix226

Session Initiation Protocol (SIP) Working Group
Supplemental Home Page

[Drafts] [Morgue] [Last Call Info] [Meetings] [Design teams] [Issues] Process] [References]
[SIPPING]

14-Jun-01: the Last Call Calendar has been updated.

1-Jun-01: This site has been heavily modified.

1-Jun-01: See the SIPPING Site here.

• Drafts – Text and status information.
• Morgue – Archive of expired drafts.
• Last Call Info – Schedule, reviewers and reviewers references.
• Meetings – IETF, Interim Meetings, etc.
• Design Teams – Teams working on specific issues.
• Issues – Stuff we need to take care of.
• Processes – Ok, everybody has to have a few rules.
• References – Some useful information that we don't have.
• SIPPING – SIPPING Working Group Supplemental Home Page.

Volunteer to conduct nits and last call reviews by contacting Rakesh Shah (rshah@dynamicsoft.com).

Brought to you as a personal effort (that's no corporate sponsorship implied, ok?) of Dean Willis, who
can be reached at or dean.willis@softarmor.com and serveral other unlikely places. This is a personal
server. Please don't thrash it. Have a nice day!

Updated June 06, 2001 14:08 UST

Important Notes

General Notes

Menu

Figure A-3
http://softarmor.com
/sipwg

The SIP forum

Although the SIP forum (Figure A-5) is not a technical organization, it is
worthwhile mentioning. The purpose of the SIP forum (http://www.sipfo-
rum.org) is to spread information related to SIP. This is usually done
through papers, conferences, and mailing lists. It is important to note that
the SIP forum does not produce any technical specification, it just spreads
information about SIP.

227Appendix

•
•
•
•
•
•
•
•
•
•

Figure A-4
http://softarmor.com
/sipping

RFC example

This section consists of an example of an RFC. This is intended for readers
that do not feel comfortable surfing the Internet looking for information but
would like to know what an RFC looks like. Since this section is intended
only to be an example of an IETF specification, we have chosen the short-
est (in number of pages) RFC related to SIP that has been released so far:
the SIP INFO method [RFC 2976].

The readers might find it interesting to read the full copyright statement
in the last page of this RFC. Each RFC contains such a statement at the
end. Another interesting aspect of each RFC is that they all are written in
textual format.Therefore, if they include any figures they are always drawn
using textual characters.

This RFC can be downloaded from http://www.ietf.org/rfc/rfc2976.txt

Appendix228

SIP Forum is a non profit association whose mission is to promote
awaremess and provide information about the benefits and capabilities
that are enabled by SIP.

SIP Forum will accomplish the mission by posting and generating white
papers and by sharing information between service providers, product
manufacturers, and research institutions.

SIP Forum is open to everyone that is willing to contribute to spread information of SIP and
accepts the architecturalmodel that SIP relies on. Individual membership is free.
Organizations pay a yearly fee to cover the administration costs of the forum.

SIP (Session Initiation Protocol) is emerging asthe protocol of choice for setting up
conferencing, telephony, multimedia and other types of communication sessions on the
Internet, SIP may also be used for new types of communications, such as instant messaging
and application level mobility across various networks, including wireless, and across user
devices. Work on SIP is accomplished primarily in the IETF SIP working group, and at SIP
bake-offs. SIP has however manifold interactions with other areas, such as the next
generation wireless internetworks, QoS, payments and security. The objective of the SIP
Forum is to facilitate the integration of SIP with such other areas of work on the Internet. We
are at the beginning of an explosion of new services under development by significant Internet
service providers and by vendors of Internet technology based on SIP. The SIP Forum is the
meeting place for developers of commercial SIP based services and Internet technology, such
as IP phones, PC clients, SIP servers and IP telephony gateways.

The SIP Forum took a major step this year in taking on responsibility for
coordinationg future SIP interoperability testing events. Thes events,
previously called "SIP bakeoffs" and now renamed "SIPit," were
previously coordinated by Henning Schulzrinne, one of the primary authors of the SIP
protocol. Each of these events are hosted by a different vendor company at locations around
the world, and have been a key component in the speed at which new SIP-based products
and services have entered the marketplace. "SIP interoperability events have helped to ensure
that SIP products from different vendors can work together, simplifying the task of building
robust and feature-rich IP telephony and multimedia networks. I am very pleased that the SIP
Forum has agreed to take over the incresingly large job of coordinating the SIPit
interoperability events," said Mr. Schulzrinne. "By working with each host company to
coordinate planning and execution, I know the SIP Forum will insure continuity and quality in
future events."

SIPit interoperability events are open to any organization developing SIP-based products and
prototypes. They offer a non-competitive environment for testing the interoperation of
SIP-based devices. Experiences and knowledge from these events are fed back into the IETF
standardization process. Since results from these events are confidential, vendors can use the
knowledge gained to help debug their prototypes and products, discovering interoperability
problems early in the development process. you find the SIPit information by following this
link.

()

SIP Forum announces the responsibility for the SIP interoperability events

Past Surveys

Votes-91 comments:
0

Figure A-5
http://sipforum.org

RFC

Network Working Group S. Donovan
Request for Comments: 2976 dynamicsoft
Category: Standards Track October 2000

The SIP INFO Method

Status of this Memo

This document specifies an Internet standards track protocol for the
Internet community, and requests discussion and suggestions for
improvements. Please refer to the current edition of the "Internet
Official Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Internet Society (2000). All Rights Reserved.

Abstract

This document proposes an extension to the Session Initiation
Protocol (SIP). This extension adds the INFO method to the SIP
protocol. The intent of the INFO method is to allow for the carrying
of session related control information that is generated during a
session. One example of such session control information is ISUP and
ISDN signaling messages used to control telephony call services.

This and other example uses of the INFO method may be standardized in the
future.

Table of Contents

1 Introduction .2
1.1 Example Uses .2
2 INFO Method .3
2.1 Header Field Support for INFO Method .3
2.2 Responses to the INFO Request Method .4
2.3 Message Body Inclusion .5
2.4 Behavior of SIP User Agents .6
2.5 Behavior of SIP Proxy and Redirect Servers .6
2.5.1 Proxy Server .6
2.5.2 Forking Proxy Server .6
2.5.3 Redirection Server .6
3 INFO Message Bodies .6
4 Guidelines for extensions making use of INFO .7
5 Security Considerations .7
6 References .8

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Donovan Standards Track [Page 1]
RFC 2976 SIP INFO Method October 2000

7 Acknowledgments .8
8 Author's Address .8

Full Copyright Statement .9

1. Introduction

The SIP protocol described in [1] defines session control messages
used during the setup and tear down stages of a SIP controlled
session.

In addition, the SIP re-INVITE can be used during a session to change
the characteristics of the session. This is generally to change the
properties of media flows related to the session or to update the SIP
session timer.

However, there is no general-purpose mechanism to carry session
control information along the SIP signaling path during the session.

The purpose of the INFO message is to carry application level
information along the SIP signaling path.

The INFO method is not used to change the state of SIP calls, or the
parameters of the sessions SIP initiates. It merely sends optional
application layer information, generally related to the session.
It is necessary that the mid-session signaling information traverse
the post session setup SIP signaling path. This is the path taken by
SIP re-INVITEs, BYEs and other SIP requests that are tied to an
individual session. This allows SIP proxy servers to receive, and
potentially act on, the mid-session signaling information.

This document proposes an extension to SIP by defining the new INFO
method. The INFO method would be used for the carrying of mid-call
signaling information along the session signaling path.

1.1 Example Uses

The following are a few of the potential uses of the INFO message:

- Carrying mid-call PSTN signaling messages between PSTN
gateways,

- Carrying DTMF digits generated during a SIP session.

- Carrying wireless signal strength information in support of
wireless mobility applications.

- Carrying account balance information.

RFC230

Donovan Standards Track [Page 2]
RFC 2976 SIP INFO Method October 2000

- Carrying images or other non streaming information between the
participants of a session.

These are just potential uses; this document does not specify such
uses nor does it necessarily recommend them.

It can also be envisioned that there will be other telephony and
non-telephony uses of the INFO method.

2. INFO Method

The INFO method is used for communicating mid-session signaling
information along the signaling path for the call.

The INFO method is not used to change the state of SIP calls, nor
does it change the state of sessions initiated by SIP. Rather, it
provides additional optional information which can further enhance
the application using SIP.

The signaling path for the INFO method is the signaling path
established as a result of the call setup. This can be either direct
signaling between the calling and called user agents or a signaling
path involving SIP proxy servers that were involved in the call setup
and added themselves to the Record-Route header on the initial INVITE
message.

The mid-session information can be communicated in either an INFO
message header or as part of a message body. The definition of the
message body and/or message headers used to carry the mid-session
information is outside the scope of this document.

There are no specific semantics associated with INFO. The semantics
are derived from the body or new headers defined for usage in INFO.

2.1 Header Field Support for INFO Method

Tables 1 and 2 add a column to tables 4 and 5 in the [1]. Refer
to Section 6 of [1] for a description of the content of the
tables. Note that the rules defined in the enc. and e-e columns
in tables 4 and 5 in [1] also apply to use of the headers in the
INFO request and responses to the INFO request.

231RFC

RFC232

Donovan Standards Track [Page 3]
RFC 2976 SIP INFO Method October 2000

2.2 Responses to the INFO Request Method

If a server receives an INFO request it MUST send a final response.

A 200 OK response MUST be sent by a UAS for an INFO request with
no message body if the INFO request was successfully received for
an existing call. Beyond that, no additional operations are
required.

Header Where INFO
------ ----- ----
Accept R o
Accept-Encoding R o
Accept-Language R o
Allow 200 -
Allow 405 o
Authorization R o
Call-ID gc m
Contact R o
Contact 1xx -
Contact 2xx -
Contact 3xx -
Contact 485 -
Content-Encoding e o
Content-Length e o
Content-Type e *
CSeq gc m
Date g o
Encryption g o
Expires g o
From gc m
Hide R o
Max-Forwards R o
Organization g o

Table 1 Summary of header fields, A-0

Handling of INFO messages that contain message bodies is outside
the scope of this document. The documents defining the message
bodies will also need to define the SIP protocol rules associated
with those message bodies.

A 481 Call Leg/Transaction Does Not Exist message MUST be sent by
a UAS if the INFO request does not match any existing call leg.

Donovan Standards Track [Page 4]
RFC 2976 SIP INFO Method October 2000

If a server receives an INFO request with a body it understands,
but it has no knowledge of INFO associated processing rules for
the body, the body MAY be rendered and displayed to the user. The
INFO is responded to with a 200 OK.

If the INFO request contains a body that the server does not
understand then, in the absence of INFO associated processing
rules for the body, the server MUST respond with a 415 Unsupported
Media Type message.

Header Where INFO
------ ----- ----
Priority R o
Proxy-Authenticate 407 o
Proxy-Authorization R o
Proxy-Require R o
Require R o
Retry-After R -
Retry-After 404,480,486 o
Retry-After 503 o
Retry-After 600,603 o
Response-Key R o
Record-Route R o
Record-Route 2xx o
Route R o
Server r o
Subject R o
Timestamp g o
To gc(1) m
Unsupported 420 o
User-Agent g o
Via gc(2) m
Warning r o
WWW-Authenticate401 o

Table 2 Summary of header fields, P-Z

Bodies which imply a change in the SIP call state or the sessions
initiated by SIP MUST NOT be sent in an INFO message.

Other request failure (4xx), Server Failure (5xx) and Global
Failure (6xx) responses MAY be sent for the INFO Request.

2.3 Message Body Inclusion

The INFO request MAY contain a message body.

233RFC

RFC234

Donovan Standards Track [Page 5]
RFC 2976 SIP INFO Method October 2000

2.4 Behavior of SIP User Agents

Unless stated otherwise, the protocol rules for the INFO request
governing the usage of tags, Route and Record-Route,
retransmission and reliability, CSeq incrementing and message
formatting follow those in [1] as defined for the BYE request.

An INFO request MAY be cancelled. A UAS receiving a CANCEL for an
INFO request SHOULD respond to the INFO with a "487 Request
Cancelled" response if a final response has not been sent to the
INFO and then behave as if the request were never received.

However, the INFO message MUST NOT change the state of the SIP
call, or the sessions initiated by SIP.

2.5 Behavior of SIP Proxy and Redirect Servers

2.5.1 Proxy Server

Unless stated otherwise, the protocol rules for the INFO
request at a proxy are identical to those for a BYE request as
specified in [1].

2.5.2 Forking Proxy Server

Unless stated otherwise, the protocol rules for the INFO
request at a proxy are identical to those for a BYE request as
specified in [1].

2.5.3 Redirection Server

Unless stated otherwise, the protocol rules for the INFO
request at a proxy are identical to those for a BYE request as
specified in [1].

3. INFO Message Bodies

The purpose of the INFO message is to carry mid-session information
between SIP user agents. This information will generally be carried
in message bodies, although it can be carried in headers in the INFO
message.

The definition of the message bodies or any new headers created for
the INFO method is outside the scope of this document. It is
expected that separate documents will be created to address
definition of these entities.

235RFC

Donovan Standards Track [Page 6]
RFC 2976 SIP INFO Method October 2000

In addition, the INFO method does not define additional mechanisms
for ensuring in-order delivery. While the CSeq header will be
incremented upon the transmission of new INFO messages, this should
not be used to determine the sequence of INFO information. This is
due to the fact that there could be gaps in the INFO message CSeq
count caused by a user agent sending re-INVITES or other SIP
messages.

4. Guidelines for extensions making use of INFO

The following are considerations that should be taken into account
when defining SIP extensions that make use of the INFO method.

- Consideration should be taken on the size of message bodies to be
carried by INFO messages. The message bodies should be kept small
due to the potential for the message to be carried over UDP and the
potential for fragmentation of larger messages.

- There is potential that INFO messages could be forked by a SIP
Proxy Server. The implications of this forking of the information
in the INFO message need to be taken into account.

- The use of multi-part message bodies may be helpful when defining
the message bodies to be carried by the INFO message.

- The extensions that use the INFO message MUST NOT rely on the
INFO message to do anything that effects the SIP call state or the
state of related sessions.

- The INFO extension defined in this document does not depend on
the use of the Require or Proxy-Require headers. Extensions using
the INFO message may need the use of these mechanisms. However,
the use of Require and Proxy-Require should be avoided, if
possible, in order to improve interoperability between SIP
entities.

5. Security Considerations

If the contents of the message body are private then end-to-end
encryption of the message body can be used to prevent unauthorized
access to the content.

There are no other security issues specific to the INFO method.
The security requirements specified in the SIP specification apply
to the INFO method.

RFC236

Donovan Standards Track [Page 7]
RFC 2976 SIP INFO Method October 2000

6. References

[1] Handley, M., Schulzrinne, H., Schooler, E. and J. Rosenberg,
"SIP: Session Initiation Protocol", RFC 2543, March 1999.

7. Acknowledgements

The author would like to thank Matthew Cannon for his contributions
to this document. In addition, the author would like to thank the
members of the MMUSIC and SIP working groups, especially Jonathan
Rosenberg, for comments and suggestions on how to improve the
document.

8. Author's Address

Steve Donovan
dynamicsoft
5100 Tennyson Parkway, Suite 200
Plano, Texas 75024

E-mail: sdonovan@dynamicsoft.com

Donovan Standards Track [Page 8]
RFC 2976 SIP INFO Method October 2000

9. Full Copyright Statement

Copyright © The Internet Society (2000). All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an "AS IS"
basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PAR-
TICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.

237RFC

ACRONYMS

2G Second generation of mobile systems

3G Third generation of mobile systems

3GPP Third Generation Partnership Project

3GPP2 Third Generation Partnership Project 2

AC Alternating current

ANSI American National Standards Institute

APEX Application EXchange

ARIB Association of Radio Industries and Businesses

ASCII American Standard Code for Information Interchange

ASN-1 Abstract Syntax Notation 1

ATM Asynchronous Transfer Mode

AVP Audio/Video Profile

BCP Best Current Practice

BOF Birds of Feathers

BTS Base Transceiver Station

CAS Channel Associated Signalling

CCP Connection Control Protocol

CMS Call Management Server

CMSS Call Management Server Signalling

CSCF Call/Session Control Function

CSS Common Channel Signalling

CWTS China Wireless Telecommunications Standard

DC Direct current

DHCP Dynamic Host Configuration Protocol

DiffServ Differentiated Services

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

DMP Device Messaging Protocol

DSS-1 Digital Subscriber Line No. 1

DTMF Dual Tone Multi-Frequency

EIA Electronic Industries Alliance

ETSI European Telecommunication Standard Institute

FDM Frequency Division Multiplexing

GSM Global System for Mobile communications

HSS Home Subscriber Server

HTTP Hypertext Transfer Protocol

IAB Internet Architecture Board

ICB Internet Cooperation Board

ICCB Internet Configuration Control Board

I-CSCF Interrogating-Call/Session Control Function

ID Identification

I-D Internet Draft

IETF Internet Engineering Task Force

IMAP Internet Message Access Protocol

IP Internet Protocol

IPSec Internet Protocol Security

IPTEL IP Telephony

IMPP Instant Messaging and Presence Protocol

IMT-2000 International Mobile Telecommunications 2000

IN Intelligent Network

INAP Intelligent Network Application Protocol

INRIA Institut National de Recherche en Informatique
et en Automatique

IRG Internet Research Group

Acronyms240

ISDN Integrated Services Digital Network

ISOC Internet Society

ISUP ISDN User Part

ITU International Telecommunication Union

ITU-T International Telecommunication Union
Telecommunication Standardization Sector

IVS INRIA Videoconferencing System

Kbps Kilobits per second

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

MCU Multipoint Control Unit

MIME Multipurpose Internet Mail Extensions

MG Media Gateway

MGC Media Gateway Controller

MGCP Media Gateway Control Protocol

MMCC Multimedia Conference Control

MMUSIC Multiparty Multimedia Session Control

MSC Mobile Switching Center

MTA Multimedia Terminal Adapter

NCP Network Control Protocol

NCS Network Call Signalling

PBX Private Branch Exchange

PCM Pulse Code Modulation

PDF Portable Document Format

P-CSCF Proxy-Call/Session Control Function

PHB Per Hop Behavior

PINT PSTN and Internet Interworking

241Acronyms

PRIM Presence and Instant Messaging

PSTN Public Switched Telephone Network

PUA Presence User Agent

QoS Quality of Service

RFC Request for Comments

RFI Request for Information

RFP Request for Products

RSVP ReSerVation Protocol

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

RTSP Real-time Streaming Protocol

SAP Session Announcement Protocol

SCIP Simple Conference Invitation Protocol

SCP Service Control Point

S-CSCF Serving-Call/Session Control Function

SCTP Stream Control Transmission Protocol

SDP Session Description Protocol

SDPng SDP next generation

SG Signalling Gateway

SIMPLE SIP for Instant Messaging and Presence
Leveraging Extensions

SIP Session Initiation Protocol

SLP Service Location Protocol

S/MIME Secure/Multipurpose Internet Mail Extensions

SMTP Simple Mail Transport Protocol

SS6 Signalling System no. 6

SS7 Signalling System no. 7

Acronyms242

SSP Service Switching Point

STD Standard

TCP Transmission Control Protocol

TDM Time Division Multiplexing

TIA Telecommunications Industry Association

TLS Transport Layer Security

TN Telephone Network

TTA Telecommunications Technology Association

TTC Telecommunications Technology Committee

TUP Telephone User Part

TV Television

UA User Agent

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

URI Universal Resource Identifier

URL Uniform Resource Locator

US United States

VCR Video Cassette Recorder

VoIP Voice over IP

243Acronyms

This page intentionally left blank.

REFERENCES

[draft-ietf-bgmp-spec] D. Thaler, D. Estrin, D. Meyer, “Border Gateway
Multicart Protocol (BGMP),” IETF. Work in progress.

[draft-ietf-impp-cpim] D. Crocker, A. Diacakis, F. Mazzoldi, C. Huitema, G.
Klyne, M. Rose, J. Rosenberg, R. Sparks, H. Sugano. “A Common Profile
for Instant Messaging (CPIM),” IETF. Work in progress.

[draft-ietf-mmusic-confarch] M. Handley, J. Crowcroft, C. Bormann, J. Ott.
“The Internet Multimedia Conferencing Architecture,” IETF. Work in
progress.

[draft-ietf-mmusic-sdpng] D. Kutscher, J. Ott, C. Bormann. “Session
Description and Capability Negotiation,” IETF. Work in progress.

[draft-ietf-sip-100rel] J. Rosenberg, H. Schulzrinne. “Reliability of
Provisional Responses in SIP,” IETF. Work in progress.

[draft-ietf-sip-callerprefs] H. Schulzrinne, J. Rosenberg. “SIP Caller
Preferences and Callee Capabilities,” IETF. Work in progress.

[draft-ietf-sip-cc-transfer] R. Sparks. “SIP Call Control—Transfer,” IETF.
Work in progress.

[draft-ietf-sip-dhcp] G. Nair, H. Schulzrinne. “DHCP Option for SIP
Servers,” IETF. Work in progress.

[draft-ietf-sip-events] A. Roach, “Event Notification in SIP,” IETF. Work in
progress.

[draft-ietf-sip-guidelines] J. Rosenberg, H. Schulzrinne. “Guidelines for
Authors of SIP Extensions,” IETF. Work in progress.

[draft-ietf-sip-isup] G. Camarillo, A. Roach, J. Peterson, L. Ong. “ISUP to
SIP Mapping,” IETF. Work in progress.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

[draft-ietf-sip-isup-mime] E. Zimmerer, J. Peterson, A. Vemuri, L. Ong, M.
Watson, M. Zonoun. “MIME media types for ISUP and QSIG Objects,”
IETF. Work in progress.

[draft-ietf-sip-manyfolks-resource] W. Marshall, K. Ramakrishnan, E.
Miller, G. Russell, B. Beser, M. Mannette, K. Steinbrenner, D. Oran, F.
Andreasen, M. Ramalho, J. Pickens, P. Lalwaney, J. Fellows, D. Evans,
K. Kelly, A. Roach, J. Rosenberg, D. Willis, S. Donovan, H. Schulzrinne.
“Integration of Resource Management and SIP. SIP Extensions for
Resource Management,” IETF. Work in progress.

[draft-ietf-sip-rfc2543bis] M. Handley, H. Schulzrinne, E. Schooler, and J.
Rosenberg. “SIP: Session Initiation Protocol,” IETF. Work in progress.

[draft-ietf-sip-serverfeatures] J. Rosenberg, H. Schulzrinne. “The SIP
Supported Header,” IETF. Work in progress.

[draft-kempf-sip-findsrv] J. Kempf, J. Rosenberg. “Finding a SIP Server
with SLP,” IETF. Work in progress.

[draft-kutscher-mmusic-sdpng-req] D. Kutscher, J. Ott, C. Bormann.
“Requirements for Session Description and Capability Negotiation,”
IETF. Work in progress.

[draft-moyer-sip-appliances-framework] S. Moyer, D. Marples, S. Tsang,
J. Katz, P. Gurung, T. Cheng, A. Dutta, H. Schulzrinne, A. Roychowd-
hury. “Framework Draft for Networked Appliances Using the Session
Initiation Protocol,” IETF. Work in progress.

[draft-rosenberg-impp-im] J. Rosenberg, D. Willis, R. Sparks, B. Campbell,
H. Schulzrinne, J. Lennox, C. Huitema, B. Aboba, D. Gurle, D. Oran.
“SIP Extensions for Instant Messaging,” IETF. Work in progress.

[draft-rosenberg-sip-3pcc] J. Rosenberg, J. Peterson, H.Schulzrinne, G.
Camarillo. “Third Party Call Control in SIP,” IETF. Work in progress.

[draft-rosenberg-sip-app-components] J. Rosenberg, P. Mataga, H.
Schulzrinne. “An Application Server Component Architecture for SIP,”
IETF. Work in progress.

References246

[draft-rosenberg-sip-conferencing-models] J. Rosenberg, H. Schulzrinne.
“Models for Multi-Party Conferencing in SIP,” IETF. Work in progress.

[draft-tsang-appliances-reqs] S. Tsang, S. Moyer, D. Marples, H.
Schulzrinne, A. Roychowdhury. “Requirements for Networked
Appliances: Wide-Area Access, Control, and Interworking,” IETF. Work
in progress.

[RFC 768] J. Postel. “User Datagram Protocol,” IETF. August 1980.

[RFC 791] J. Postel. “INTERNET PROTOCOL,” IETF. September 1981.

[RFC 793] J. Postel. “Transmission Control Protocol,” IETF.
September 1981.

[RFC 821] J. Postel. “Simple Mail Transfer Protocol,” IETF. August 1982.

[RFC 854] J. Postel, J.K. Reynolds. “Telnet Protocol Specification,” IETF.
May 1983.

[RFC 1633] R. Braden, D. Clark, S. Shenker. “Integrated Services in the
Internet Architecture: An Overview,” IETF. June 1994.

[RFC 1777] W. Yeong, T. Howes, S. Kille. “Lightweight Directory Access
Protocol,” IETF. March 1995.

[RFC 1827] R. Atkinson. “IP Encapsulating Security Payload (ESP),”
IETF. August 1995.

[RFC 1889] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. “RTP: A
Transport Protocol for Real-Time Applications,” IETF. January 1996.

[RFC 1958] B. Carpenter. “Architectural Principles of the Internet,” IETF.
June 1996.

[RFC 2026] S. Bradner. “The Internet Standards Process —Revision 3,”
IETF. October 1996.

247References

[RFC 2045] N. Freed, N. Borenstein. “Multipurpose Internet Mail Exten-
sions (MIME) Part One: Format of Internet Message Bodies,” IETF.
November 1996.

[RFC 2060] M. Crispin. “Internet Message Access Protocol—Version
4rev1,” IETF. December 1996.

[RFC 2068] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee.
“Hypertext Transfer Protocol—HTTP/1.1,” IETF. January 1997.

[RFC 2131] R. Droms. “Dynamic Host Configuration Protocol,” IETF.
March 1997.

[RFC 2205] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin.
“Resource ReSerVation Protocol (RSVP)—Version 1 Functional
Specification,” IETF. September 1997.

[RFC 2246] T. Dierks, C. Allen. “The TLS Protocol Version 1.0,” IETF.
January 1999.

[RFC 2326] H. Schulzrinne, A. Rao, R. Lanphier. “Real Time Streaming
Protocol (RTSP),” IETF. April 1998.

[RFC 2327] M. Handley, V. Jacobson. “SDP: Session Description Protocol,”
IETF. April 1998.

[RFC 2475] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss.
“An Architecture for Differentiated Service,” IETF. December 1998.

[RFC 2543] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg,
“SIP: Session initiation protocol,” IETF. March 1999.

[RFC 2597] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski. “Assured
Forwarding PHB Group,” IETF. June 1999.

[RFC 2598] V. Jacobson, K. Nichols, K. Poduri. “An Expedited Forwarding
PHB,” IETF. June 1999.

[RFC 2608] E. Guttman, C. Perkins, J. Veizades. “Service Location
Protocol, Version 2,” IETF. June 1999.

References248

[RFC 2633] B. Ramsdell, “S/MIME Version 3 Message Specification,”
IETF. June 1999.

[RFC 2705] M. Arango, A. Dugan, I. Elliott, C. Huitema, S. Pickett. “Media
Gateway Control Protocol (MGCP) Version 1.0,” IETF. October 1999.

[RFC 2779] M. Day, S. Aggarwal, G. Mohr, J. Vincent. “Instant Messag-
ing/Presence Protocol Requirements,” IETF. February 2000.

[RFC 2848] S. Petrack, L. Conroy. “The PINT Service Protocol:
Extensions to SIP and SDP for IP Access to Telephone Call Services,”
IETF. June 2000.

[RFC 2960] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, V. Paxson. “Stream Control
Transmission Protocol,” IETF. October 2000.

[RFC 2974] M. Handley, C. Perkins, E. Whelan. “Session Announcement
Protocol,” IETF. October 2000.

[RFC 2976] S. Donovan, “The SIP INFO Method,” IETF. October 2000.

249References

INDEX

Symbols

3G mobile systems, 192–193
buddy lists, 199
circuit-switched domains, 193
instant messages, 199
IP multimedia domains, 193–194
network domains, 193
packet-switched domains, 193
presence information, 199
roaming user sessions, 197
user registration, 195
visited domain registration, 196

A

AC analog phone systems, 10
access signalling, 18
ACK requests, 121–122
advantages of multicast routing, 64
amplifiers, 14
analog telephone systems, 9
analog transmission, 12
announcements, SAP, 81
APEX (APplication EXchange), 199
appliances, networked, controls, 219
Application layer, Internet, 56–57
applications

network control, 219

SIP, 192
decomposition, 114
programming, 113

architecture
Internet, TCP/IPprotocol suite, 56
IP multimedia domains, 3G mobile

systems, 194
PacketCable, 203

ARPANET, 45
assured forwarding, PHBs, 80
asynchronous event notification, SIP

extensions, 179
attenuation of signals, 14
attributes, SDP session descriptions, 85
audio codecs, 14
authentication, 187–189
automatic UA configuration, SIP

extensions, 172–173

B

bake offs. See interoperability events.
bandwidth, SAP announcements, 81
BCP (Best Current Practice) RFCs, 50
Bell, Alexander Graham, 9
BGMP (Border Gateway Multicast

Protocol), 70
body, SIP messages, 142–144
BOF (Birds Of Feathers) meetings, 49

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

buddy lists, 3G mobile systems, 199
building applications with SIP, 192
busy tones, 10
BYE requests, 125

C

cable modems, PacketCable, 202
call connection process, 10
call stateful proxy servers, 127
Call-ID headers, SIP requests, 135
caller preferences, SIP extensions, 177–179
CANCEL transactions, 148
CANCEL requests, 123–124
CAS (Channel Associated Signalling), 20
CBTs (Core-Based Trees), 68
CCP (Connection Control Protocol), 91
CCS (Common Channel Signalling), 21
Central Battery systems, 9
circuit-switched domains,

3G mobile systems, 193
circuit-switched networks, 2–3

control plane, 8
exchanges, 5
fully meshed, 3
signalling, 8
star topology, 4
strengths, 6
switches, 4
terminals, 6
user plane, 8
weaknesses, 7

Index252

clients, SIP, 116
CMS (Call Management Server),

PacketCable, 203
CMSS (Call Management Server

Signalling), 203
COMETs (preConditions MET), 174
conferencing, 214

decentralized multipoint conferencing, 217
multicast, 215

connections, IP, 37
end-system intelligence, 38
high availability, 39

Contact headers, SIP requests, 136
Control plane, 8
controlled load, integrated services, IP, 75
coordinating bodies of the Internet, 46
CSCFs (Call/Session Control Functions), 194
Csec headers, SIP requests, 137–138

D

datagrams
differences from virtual circuits, 34
dynamic routing, 35
routing, 32

DC analog phone systems, 10
DDS-1 (Digital Subscriber Line No. 1), 19
decentralized multipoint conferences, 217
delay

digital transmission, 14–15
packets, 32
virtual circuits, 35

Dense mode, multicast routing
protocols, 65–66

descriptions, SIP sessions, 108
designing

protocols, IETF guidelines, 42–44
SIP extensions, 163

DiffServ (Differentiated Services), 79
digital signalling systems, 17

access signalling, 18
DSS-1, 19
DTMF tones, 18
NNI, 18
trunk signalling, 18–21
UNI, 18

digital transmission, 13
distribution

SIP proxy servers, 129
SIP sessions, 95

distribution trees, dense mode multicast
routing protocols, 66

draft standards, IETF, 50–52
DTMF (Dual Tone Multi-Frequency)

tones, 18
DVMRP (Distance Vector Multicast Routing

Protocol), 66
dynamic routing, datagrams, 35

E

end-system intelligence
IP connections, 38
SIP, 109

253Index

end-to-end protocols, 41
entities, 98
establishing SIP sessions, 94, 108
establishment delay, 7, 35
event notification framework, SIP

extensions, 179–180
exchanges

amplifiers, 14
local, 5

expedited forwarding, PHBs, 80
extensions, SIP, 165

asynchronous event notification, 179
automatic UA configuration, 172–173
caller preferences, 177–179
COMETs, 174–176
design guidelines, 163
event notification framework, 179–180
instant messaging, 171, 200
method semantics, 164
mid-session transactions, 169
multiple message bodies, 170
negotiation, 160–162
peer-to-peer relationship, 163
PRACK requests, 168
provisional responses, 166
PSTN-to-SIP internetworking, 210
reliable delivery of provisional

responses, 166
sending commands, 186
sessions

transfers, 184
type independence, 164

third-party call control, 181–182

F

FAQs, SIP-related, 225
FDM (Frequency Division

Multiplexing), 11–12, 30
filters, FDM, 12
final call calendar, SIP RFCs, 225
first analog telephone systems, 9
forking, SIP proxy servers, 104
formats, SIP messages, 130–133
From headers, SIP requests, 138
full-mesh topology, 3

G

gateways, PSTN-to-SIP internetworking, 206
high capacity, 209
low capacity, 207–208

group addresses, 102–104
GSM (Global System for Mobile), 19, 26
guaranteed services, IP, 75

H

headers, 31
routing packets, 32
SIP requests, 134

Call-ID, 135
Contact, 136
Csec, 137–138
From, 138
Record-Route, 139–140
Route, 139–140
Via, 142

Index254

high availability, IP connections, 39
high capacity gateways, PSTN-to-SIP

internetworking, 209
history of SIP, 90
HTTP, 56, 110

I

IAB
Internet Activities Board, 46
Internet Architecture Board, 47

ICB (International Cooperation Board), 46
ICCB (Internet Configuration Control

Board), 46
IESG (Internet Engineering Steering

Group), 47–49, 56
IETF (Internet Engineering Task Force), 47

BCPs, 51
BOF meetings, 49
drafts

naming conventions, 52
standards, 50

informational RFCs, 51
Internet drafts, 52
non-standards track, 51
proposed standards, 50
protocol design guidelines, 42–44
specifications, 50
standards track RFCs, 50
STD subseries, 51
toolkit, 42, 106
Web site

RFCs, 221
SIP information, 221, 223

working groups, 48–49

IGMP (Internet Group Management
Protocol), 68

IMAP (Internet Message Address
Protocol), 56, 59

implementing SIP UAs, 100
IMPP (Instant Messaging and Presence

Protocol), 199
IN (Intelligent Network) services, 24–25
in-band signalling, 11
INAP (Intelligent Network Application

Protocol), 24
INFO method, instant messaging, 212
informational RFCs, IETF, 51
instant messaging

3G mobile systems, 199
INFO method, 212
MESSAGE method, 200–201
SIP extensions, 171, 200
SUBSCRIBE/MODIFY framework, 200

integrated services, IP, 75
interactive services, 61
Internet

application layer, 56–57
architecture, 56
coordinating bodies, 46
differences from PSTN, 25
drafts, 52
interactive services, 61
Mbone, 70
multicasting films, 87
multimedia services, 61
real-time services, 59
reliability, 26
streaming services, 59
TCP/IP protocol suite, 56
transport layer, 56–58

255Index

internetworking, PSTN-to-SIP, 204
extensions, 210
gateways, 206–209
message bodies, 211
PINT, 213

interoperability events, 94
INVITE requests, SIP transactions,

119–120, 145
INVITE responses, SIP transactions, 146
IP (Internet Protocol)

3G mobile systems, 193–094
connections, 37–39
DiffServ PHBs, 79
integrated services, 75
multimedia domains, 193–194
QoS, 74
reservation merging, 76
soft states, 78
state information, 76
statelessness, 39

IPTEL (IP Telephony) working group, 48
IRG (Internet Research Group), 46
IRTF (Internet Research Task Force), 47
ISDN (Integrated Services Digital

Network), 2
ISOC (Internet Society), 47
ISPs (Internet Service Providers), 27
ISUP (ISDN User Part), 23

supplementary services, 24
user plane, 27

IVS (INRIA Videoconferencing System), 91

J–L

jitter, 71
load balancing, routing, 32
Local Battery systems, 9
local exchanges, 5
local loop, 15
location servers, 105
locations, users, registering with SIP, 97
low-capacity gateways, PSTN-to-SIP

internetworking, 207–208

M

Mbone, 70
MCUs (Multipoint Control Units), 216
media tools, SIP UAs, 100
MESSAGE method, instant messaging,

200–201
messages, SIP

body, 142–144, 211
instant, 171
integrity, authentication, 189
text-based, 130

methods
MESSAGE, 201
semantics, SIP extensions, 164

mid-session transactions, SIP
extensions, 169

MMCC (Multimedia Conference Control),
CCP, 91

MMUSIC (Multiparty Multimedia Session
Control) working group, 48

Index256

mobility of users, 96
MSCs (Mobile Switching Centers), 26
MTA (Multimedia Terminal Adaptor), 203
multicast conferences, 215
multicast routing, 62

advantages, 64
protocols, 65–66

multicasting films, Internet, 87
multimedia services, 61
multiple message bodies, SIP extensions, 170

N

naming conventions, IETF drafts, 52
NCP (Network Control Protocol), 45
negotiation process, SIP extensions, 160–162
networks

circuit-switched, 2
control plane, 8
exchanges, 5
fully meshed, 3
origins, 3
signalling, 8
star topology, 4
strengths, 6
switches, 4
terminals, 6
user plane, 8
weaknesses, 7

domains, 3G mobile systems, 193
X.25, 36

NNI (Network-to-Network Interface), 18
non-standards track, IETF, 51
non-successful final responses, SIP, 146

O–P

OPTIONS requests, 126
overview of SIP, 90
packet switching, 30

domains, 3G mobile systems, 193
routers, 31
strengths, 35
weaknesses, 36

PacketCable, 202–203
packets

delay, 32
headers, 31–32
RTP, 71

path establishment delay, 7
PATH messages, RSVP, 79
payload types, RTP packets, 71
PCM (Pulse Code Modulation), 14
peer-to-peer relationship, SIP

extensions, 163
PHBs (Per Hop Behaviors), 79
PIM-DM (Protocol Independent

Multicast–Dense Mode), 66
PIM-SM (Protocol Independent

Multicast–Sparse Mode), 68
PINT (PSTN and Internet

Interworking), 213
PRACK requests, SIP extensions, 168
presence service, 199–200
PRIM (Presence and Instant

Messaging), 199
programming SIP apps, 113
proposed standards

IETF, 50
SIP, 93

257Index

protocols
BGMP, 70
CBTs, 68
CCP, 91
CMSS, 203
DVMRP, 66
end to end, 41
IETF design guidelines, 42–44
IGMP, 68
IMAP, 56, 59
INAP, 24
multicast routing, 65
NCP, 45
PIM-DM, 66
PIM-SM, 68
PINT, 213
RSVP, 78
RTCP, 73
RTP, 71, 91
RTSP, 87
SAP, 81–82
SCIP, 92
SDP, 91
SDPng, 87
signalling, 2
SIP, 30

historical overview, 90
transport layer, 144
version 1, 91
version2, 92

SMTP, 59
TCP, 58
TCP/IP, 56
UDP, 58

provisional responses, SIP extensions, 166
proxy servers, 103, 126

calls, 151–157
distribution, 129
forking, 104
group addresses, 104
stateful, 127–128
stateless, 129

PSTN (Public Switched Telephone
Network), 2

access signalling, 18
analog transmission, 12
busy tones, 10
call connection process, 10
Central Battery systems, 9
DC and AC systems, 10
differences from Internet, 25
digital signalling systems, 17–18
digital transmission, 13

audio codecs, 14
delay, 14–15
local loop, 15
PCM, 14
strengths, 14
TDM, 15–16
weaknesses, 14

DSS-1, 19
DTMF tones, 18
early telephone systems, 9
FDM, 11
in-band signalling, 11
Local Battery systems, 9
NNI, 18
reliability, 26
signal spectrum, 12

Index258

SIP internetworking, 204
extensions, 210
gateways, 206
high-capacity gateway, 209
low-capacity gateway, 207–208
message bodies, 211
PINT, 213

trunk signalling, 18–21
UNI, 18
X.25, 36

PUA (Presence User Agent), 200

Q–R

QoS (Quality of Service), 74
real-time services, 59
real-time traffic transport, 70–71
reason phrases, SIP responses, 117
Record-Route headers, SIP requests,

139–140
redirect servers, 102
registering user locations, 97
REGISTER requests, 125
registrars, 105
reliability of the Internet, 26
reliable delivery of provisional responses,

SIP extensions, 166
repeaters, 14
requests, SIP, 117, 132

ACK, 121–122
BYE, 125
CANCEL, 123–124
Csec, 137–138

headers, 134
Call-ID, 135
Contact, 136
From, 138
Record-Route, 139–140
Route, 139–140
Via, 142

INVITE, 119–120
OPTIONS, 126
REGISTER, 125
request line, 132

reservation merging, 76
responses, SIP, 116

format, 132
non-successful final, 146
reason phrases, 117
status codes, 117–118
status line, 133
successful final, 148

RESV messages, RSVP, 78
RFCs (Request For Comments), 46, 227

BCPs (Best Current Practices), 50
SIP information, 221
standards track, 50

roaming user sessions, 3G mobile
systems, 197

robustness, IETF protocol design, 44
route headers, SIP requests, 139–140
routers, 31
routing

datagrams, 32
load balancing, 32
multicast, 62

advantages, 64

259Index

protocols, 65
dense mode, 65
sparse mode, 66

packet headers, 32
unicast, 62
virtual circuits, 33

RSVP (ReSerVation Protocol)
PATH messages, 79
RESV messages, 78

RTCP (Real-time Transport Control
Protocol), 73

RTP (Real-time Transport Protocol), 71, 91
RTSP (Real-Time Streaming Protocol), 87

S

S/MIME confidentiality, 189
SAP (Session Announcement Protocol)

announcements, 81
session descriptions, 82

scalability
IETF protocol design, 44
SIP, 110

Schulzrinne, Henning, Web site, SIP
information, 223

SCIP (Simple Conference Invitation
Protocol), 92

SCPs (Service Control Point), 25
SDP (Session Description Protocol), 82, 91

attributes, 85
session descriptions, 83
syntax, 83–84

SDPng (SDP Next Generation), 87, 108
security

S/MIME confidentiality, 189
SIP, 187

sending commands, SIP extensions, 186
servers

presence, 200
SIP, 116

forking proxy, 104
group addresses, 104
location, 105
proxy, 103

redirect, 102, 105
services, Internet, 59–61
session descriptions

SAP, 82
SDP, 83–85
SIP, 95, 108

sessions
distribution, 95
establishment, 94, 108
SIP extensions

transfers, 184
type independence, 164

signal attenuation, 14
signal spectrum, 12
signalling

control plane, 8
digital. See digital signalling.
protocols, 2
user plane, 8

SIMPLE (SIP for Instant Messaging and
Presence Leveraging Extensions), 200

simplicity, IETF protocol design, 44

Index260

SIP (Session Initiation Protocol), 30
ACK requests, 121–122
application decomposition, 114
authentication, 187–189
bridging, 210
building applications, 192
BYE requests, 125
call stateful proxy servers, 127
CANCEL requests, 123–124
CANCEL transactions, 148
clients, 116
conferencing, 214
CSCFs (Call/Session Control

Functions), 194
decentralized multipoint conferences, 217
end-system intelligence, 109
entities, 98
extensions, 165

asynchronous event notification, 179
automatic UA configuration, 172–173
caller preferences, 177–179
COMETs, 174–176
design guidelines, 163
event notification framework, 179–180
instant messaging, 171, 200
method semantics, 164
mid-session transactions, 169
multiple message bodies, 170
negotiation, 160–162
peer-to-peer relationship, 163
PRACK requests, 168
provisional responses, 166
reliable delivery of provisional

responses, 166
sending commands, 186

session transfers, 184
session type independence, 164
third-party call control, 181–182

forking proxy servers, 104
functionality, 94
group addresses, 102
historical overview, 90
HTTP basis, 110
IETF toolkit, 106
Internet component reuse, 110
interoperability, 109
interoperability events, 94
INVITE requests, 119–120, 145
INVITE responses, 146
location servers, 105
messages

bodies, 142, 144
text-based, 130

multicast conferences, 215
non-successful final responses, 146
OPTIONS requests, 126
programming apps, 113
proposed standards, 93
proxy calls, 151–157
proxy servers, 103, 126

distribution, 129
group addresses, 104

PSTN internetworking, 204
extensions, 210
gateways, 206
high-capacity gateways, 209
low-capacity gateways, 207–208
message bodies, 211
PINT, 213

261Index

REGISTER requests, 125
registering user locations, 97
registrars, 105
requests, 117

Call-ID headers, 135
Contact headers, 136
Csec, 137–138
From headers, 138
headers, 134
Record-Route headers, 139–140
request line, 132
Route headers, 139–140
Via headers, 142

responses
format, 132
reason phrases, 117
status codes, 117–118
status line, 133

RFC example, 227
S/MIME confidentialty, 189
scalability, 110
security, 187
servers, 116
session

descriptions, 95, 108
distribution, 95
establishment, 94, 108

SMTP routing basis, 112
stateful proxy servers, 127–128
stateless proxy servers, 129
successful final responses, 148
three way handshake, 121
transactions, 116, 150
transport layer protocols, 144

UACs (User Agent Clients), 116
UAs (User Agents), 100–102
UASs (User Agent Servers), 116
URLs (Uniform Resource

Locators), 97, 111
user mobility, 96
versions, 91–92
Web sites, 221

Dean Willis, 225
Henning Schulzrinne, 223
IETF, 221, 223
RFCs, 221
SIP Forum, 226

SIP Forum Web site, SIP information, 226
SIP toolkit, 165.

See also 3G mobile systems.
SIP working group, 48
SMTP (Simple Message Transfer

Protocol), 59, 112
soft states, IP, 78
Sparse mode, multicast routing protocols, 66
specifications, IETF, 50
SS7 (Signalling System 7), intelligence

inside network, 23–25
SSPs (Service Switching Points), 25
standards track RFCs, 50
star topology, 4
state information storage, IP, 76
stateful proxy servers, 127–128
stateless proxy servers, 129
statelessness, IP, 39
status codes, SIP responses, 117–118
STD subseries, IETF, 51
STPs (Signalling Transfer Points), CCS, 21

Index262

streaming services, Internet, 59
strengths

circuit-switched networks, 6
digital transmission, 14
packet switching, 35

Strowger, Almon B., 9
SUBSCRIBE/MODIFY framework,

instant messaging, 200
subscriber lines, 15
successful final responses, 148
supplementary services, ISUP, 24
switch delay, 7
switchboard operator, 4
switches, 4
switching packets. See packet switching.
syntax, SDP session descriptions, 83–84

T

TCP/IP (Transmission Control
Protocol/Internet Protocol), Internet
architecture, 56–58

TDM (Time Division Multiplexing),
15–16, 30

telephone systems
access signalling, 18
analog transmission, 12
busy tones, 10
call connection process, 10
Central Battery, 9
digital transmission, 13–18
DSS-1, 19
DTMF tones, 18

263BMT Element: BMT Title (if no parts setjust BMT Element in Bold

FDM, 11
in-band signalling, 11
Local Battery, 9
NNI, 18
signal spectrum, 12
trunk signalling, 18–21
UNI, 18

terminals, 6
text-based messages, 130
third generation mobile systems, 192–193

buddy lists, 199
circuit switched domains, 193
instant messages, 199
IP multimedia domains, 193
network domains, 193
packet-switched domains, 193
presence information, 199
roaming user sessions, 197
user registration, 195
visited domain registration, 196

third-party call control,
SIP extensions, 181–182

three-way handshake, 121
timestamps, RTP packets, 71
toolkit, IETF, 42
topologies, 3–4
traffic, real-time transport, 70–71
transactions, SIP, 116, 150

CANCEL, 148
INVITE, 145–146
mid-session, 169
multiple message bodies, 170
non-successful final responses, 146
successful final responses, 148

transmitting signals, 12–13
Transport layer

Internet, 56
protocols, 58
SIP, 144

trunk signalling, 18–21
TUP (Telephone User Part), 23

U

UACs (User Agent Clients), 116
UAs (User Agents), 98

automatic configuration, 172–173
delivery-to-media tools, 100
implementation, 100
redirect servers, 102

UASs (User Agent Servers), 116
UDP (User Datagram Protocol), 58
UNI (User-to-Network Interface), 18
unicast routing, 62
upper-layer end-to-end protocols, 41
URLs (Uniform Resource Locators), 97

addressing SIP resources, 111
SDP session descriptions, 84

user plane, 8, ISUP, 27
users

mobility, 96
registration

3G mobile systems, 195
location, 97

V

versions of SIP, 91–92
Via headers, SIP requests, 142
virtual circuits, 32

differences from datagrams, 34
establishment delay, 35
routing, 33

visited domain registration,
3G mobile systems, 196

W–X

weaknesses
circuit-switched networks, 7
digital transmission, 14
packet switching, 36

Index264

Web sites, SIP-related, 221
Dean Willis, 225
Henning Schulzrinne, 223
IETF, 221–223
RFCs, 221
SIP Forum, 226

Willis, Dean, Web site, SIP information, 225
working groups, IETF, 48–49
X.25, PSTN, 36

ABOUT THE AUTHOR

Gonzalo Camarillo is the Principal Systems Expert with the Advanced Sig-
naling Research Lab of Ericsson in Helsinki, Finland. An active participant
in the IETF’s SIP Working Group since its inception, he co-authored several
contributions on SIP-related matters. He is also a frequent speaker at VoIP
conferences and the Ericsson representataive in the SIP Forum. He
received an M.Sc. degree in Electrical Engineering from Universidad
Politecnica de Madrid and another M.Sc. degree—also in Electrical Engi-
neering—from the Royal Institute of Technology in Stockholm. He is con-
tinuing his studies as a Ph.D. candidate at Helsinki University of
Technology.

Copyright 2002 The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

	SIP Demystified
	Copyright
	Acknowledgments
	Contents
	Preface
	Foreword
	Ch1 Signalling in the Circuit-Switched Network
	The Origins of Circuit-Switching
	Characteristics of Circuit-Switching
	Strengths of Circuit-Switching
	Weaknesses of Circuit-Switching

	Introduction to Signalling
	FDM and In-band Signalling
	Analog Transmission
	Digital Transmission
	Time Division Multiplexing
	Digital Signalling Systems
	Access Signalling
	Trunk Signalling
	SS7
	The Paradigm Behind SS7

	Conclusions

	Ch2 Packet Switching, IP, and the IETF
	Packet Switching
	Strengths of Packet Switching
	Weaknesses of Packet Switching
	X.25

	IP and the Internet Paradigm
	IP Connectivity
	Intelligence Pushed to the End Systems
	End-to-End Protocols
	General Design Issues

	History of the Internet Protocol Development Process
	Origins of the Request For Comments
	Coordination Bodies

	The IETF
	The IESG
	The Technical Work
	IETF Specifications: RFCs and I-Ds

	Ch3 The Internet Multimedia Conferencing Architecture
	The Internet Layered Architecture
	Transport Layer Protocols
	Real-Time Services in the Internet

	Multicast
	Routing Towards Many Receivers
	Advantages of Multicast
	Multicast Routing Protocols
	IGMP
	The Mbone

	Transport of Real-Time Data: RTP
	Jitter and Sequencing of Datagrams
	Real-Time Transport Control Protocol

	QoS Provisioning: IntegratedServices and DifferentiatedServices
	Integrated Services
	Differentiated Services (DiffServ)

	Session Announcement Protocol(SAP)
	Session Descriptions

	Session Description Protocol (SDP)
	SDP Syntax
	SDP Next Generation (SDPng)

	Real-Time Streaming Protocol(RTSP)
	Usage Example of the InternetMultimedia Conferencing Toolkit

	Ch4 The Session Initiation Protocol: SIP
	SIP History
	Session Invitation Protocol: SIPv1
	Simple Conference Invitation Protocol: SCIP
	Session Initiation Protocol: SIPv2

	Functionality Provided by SIP
	Session Establishment, Modification, andTermination
	User Mobility

	SIP Entities
	User Agents
	Redirect Servers
	Proxy Servers
	Registrars
	Location Servers

	Good Features of SIP
	SIP Is Part of the IETF Toolkit
	Separation Between Establishing andDescribing a Session
	Intelligence in the End System: End-to-EndProtocol
	Interoperability
	Scalability
	SIP as a Platform for Service Creation

	Ch5 SIP: Protocol Operation
	Client/Server Transactions
	SIP Responses
	SIP Requests
	INVITE
	ACK
	CANCEL
	BYE
	REGISTER
	OPTIONS

	Types of Proxy Servers
	Call Stateful Proxy
	Stateful Proxy
	Stateless Proxy
	Distribution of Proxies

	Format of SIP Messages
	SIP Request Format
	SIP Response Format
	SIP Headers
	SIP Bodies

	Transport Layer
	INVITE Transactions
	CANCEL Transactions
	Other Transactions

	Detailed Example
	SIP Call Through a Proxy

	Ch6 Extending SIP: The SIP Toolkit
	Extension Negotiation
	How It’s Done

	Design Principles for SIPExtensions
	Do Not Break the Toolkit Approach
	Peer-to-Peer Relationship
	Independence from Session Type
	Do Not Change Method Semantics

	Extensions to SIP
	The SIP Toolkit
	Reliable Delivery of Provisional Responses
	Mid-session Transactions That Do NotChange the State of the Session
	Multiple Message Bodies
	Instant Messages
	Automatic Configuration of UAs
	Preconditions to Be Fulfilled Before Alerting
	Caller Preferences
	Asynchronous Notification of Events
	Third-party Call Control
	Session Transfer
	Sending Commands
	SIP Security

	Ch7 Building Applications with the SIP Toolkit
	Third-generation Mobile Systems
	Network Domains
	Call Flow Examples

	Instant Messages and Presence
	SIMPLE Working Group
	Presence Architecture
	Instant Messaging

	PacketCable
	Architecture
	Call Flow Example

	PSTN-to-SIP Interworking
	Low-Capacity Gateways
	High-Capacity Gateways
	SIP Extensions for PSTN Interworking
	The PINT Service Protocol

	SIP for Conferencing
	Multicast Conferences
	End User Mixing Model
	Multipoint Control Unit (MCU)
	Decentralized Multipoint Conference

	Control of Networked Appliances

	Appendix
	IETF Web site
	Henning Schulzrinne’s SIP Web page
	Dean Willis' Web Pages
	The SIP forum
	RFC example

	RFC
	Acronyms
	References
	Index
	About The Author

	important.pdf
	Local Disk
	articlopedia.gigcities.com

